A fractional differential equations (FDEs)-based theory involving 1- and 2-term equations was developed to predict the nonlinear survival and growth curves of foodborne pathogens. It is interesting to note that the solution of 1-term FDE leads to the Weibull model. Nonlinear regression (Gauss-Newton method) was performed to calculate the parameters of the 1-term and 2-term FDEs. The experimental inactivation data of Salmonella cocktail in ground turkey breast, ground turkey thigh, and pork shoulder; and cocktail of Salmonella, E. coli, and Listeria monocytogenes in ground beef exposed at isothermal cooking conditions of 50 to 66 degrees C were used for validation. To evaluate the performance of 2-term FDE in predicting the growth curves-growth of Salmonella typhimurium, Salmonella Enteritidis, and background flora in ground pork and boneless pork chops; and E. coli O157:H7 in ground beef in the temperature range of 22.2 to 4.4 degrees C were chosen. A program was written in Matlab to predict the model parameters and survival and growth curves. Two-term FDE was more successful in describing the complex shapes of microbial survival and growth curves as compared to the linear and Weibull models. Predicted curves of 2-term FDE had higher magnitudes of R(2) (0.89 to 0.99) and lower magnitudes of root mean square error (0.0182 to 0.5461) for all experimental cases in comparison to the linear and Weibull models. This model was capable of predicting the tails in survival curves, which was not possible using Weibull and linear models. The developed model can be used for other foodborne pathogens in a variety of food products to study the destruction and growth behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1750-3841.2008.00932.xDOI Listing

Publication Analysis

Top Keywords

survival growth
16
growth curves
16
fractional differential
8
differential equations
8
microbial survival
8
foodborne pathogens
8
ground turkey
8
ground beef
8
2-term fde
8
linear weibull
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!