The speed and accuracy of odor recognition in insects can hardly be resolved by the raw descriptors provided by olfactory receptors alone due to their slow time constant and high variability. The animal overcomes these barriers by means of the antennal lobe (AL) dynamics, which consolidates the classificatory information in receptor signal with a spatiotemporal code that is enriched in odor sensitivity, particularly in its transient. Inspired by this fact, we propose an easily implementable AL-like network and show that it significantly expedites and enhances the identification of odors from slow and noisy artificial polymer sensor responses. The device owes its efficiency to two intrinsic mechanisms: inhibition (which triggers a competition) and integration (due to the dynamical nature of the network). The former functions as a sharpening filter extracting the features of receptor signal that favor odor separation, whereas the latter implements a working memory by accumulating the extracted features in trajectories. This cooperation boosts the odor specificity during the receptor transient, which is essential for fast odor recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1162/neco.2008.05-08-780DOI Listing

Publication Analysis

Top Keywords

antennal lobe
8
working memory
8
odor recognition
8
receptor signal
8
odor
5
chemosensor-driven artificial
4
artificial antennal
4
lobe transient
4
transient dynamics
4
dynamics enable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!