Rationale: Interval timing in the free-operant psychophysical procedure is sensitive to the monoamine-releasing agent d-amphetamine, the D(2)-like dopamine receptor agonist quinpirole, and the D(1)-like agonist 6-chloro-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzepine (SKF-81297). The effect of d-amphetamine can be antagonized by selective D(1)-like and 5-HT(2A) receptor antagonists. It is not known whether d-amphetamine's effect requires an intact 5-hydroxytryptamine (5-HT) pathway.
Objective: The objective of this study was to examine the effects of d-amphetamine, quinpirole, and SKF-81297 on timing in intact rats and rats whose 5-hydroxytryptaminergic (5-HTergic) pathways had been ablated.
Materials And Methods: Rats were trained under the free-operant psychophysical procedure to press levers A and B in 50-s trials in which reinforcement was provided intermittently for responding on A in the first half, and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic functions were fitted to the data for derivation of timing indices (T(50), time corresponding to %B = 50%; Weber fraction). The effects of d-amphetamine (0.4 mg kg(-1) i.p.), quinpirole (0.08 mg kg(-1) i.p.), and SKF-81297 (0.4 mg kg(-1) s.c.) were compared between intact rats and rats whose 5-HTergic pathways had been destroyed by intra-raphe injection of 5,7-dihydroxytryptamine.
Results: Quinpirole and SKF-81297 reduced T(50) in both groups; d-amphetamine reduced T(50) only in the sham-lesioned group. The lesion reduced 5-HT levels by 80%; catecholamine levels were not affected.
Conclusions: d-Amphetamine's effect on performance in the free-operant psychophysical procedure requires an intact 5-HTergic system. 5-HT, possibly acting at 5-HT(2A) receptors, may play a 'permissive' role in dopamine release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761547 | PMC |
http://dx.doi.org/10.1007/s00213-008-1400-8 | DOI Listing |
Brain Behav
December 2024
Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois, USA.
Purpose: Amphetamine (AMPH) increases locomotor activities in animals, and the locomotor response to AMPH is further modulated by caloric deficits such as food deprivation and restriction. The increment in locomotor activity regulated by AMPH-caloric deficit concomitance can be further modulated by varying feeding schedules (e.g.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Department of Fisheries, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan Surin Campus, Surin 32000 Thailand. Electronic address:
Drug Alcohol Depend
December 2024
Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA. Electronic address:
Background: Although countless studies have aimed to identify and test novel therapeutics for stimulant misuse, there are still no FDA-approved pharmacotherapies for stimulant use disorders. One potential treatment target is the dopamine D3 receptor (D3R) and studies in rodents have suggested that the novel D3R partial agonist (±)VK4-40 may be effective at decreasing cocaine self-administration. However, no previous studies have examined the efficacy of (±)VK4-40 in reducing cocaine self-administration in nonhuman primates nor the generality of effects by examining self-administration of other stimulants using a within-subjects design.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
January 2025
Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, Trondheim, Norway.
Background: Changes in gastrointestinal physiology following bariatric surgery may affect the pharmacokinetics of drugs. Data on the impact of bariatric surgery on drugs used for attention-deficit/hyperactivity disorder (ADHD) are limited.
Methods: In patients treated with ADHD medication and undergoing bariatric surgery, serial drug concentrations were measured for 24 h preoperatively and one, six and 12 months postoperatively.
CNS Drugs
November 2024
Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA, 30329, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!