An approach for the design of high-power, broadband 180 degrees pulses and mixing sequences for generating dipolar and scalar coupling mediated (13)C-(13)C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without (1)H decoupling during mixing is presented. Considering RF field strengths in the range of 100-120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B (1) field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10858-008-9292-9DOI Listing

Publication Analysis

Top Keywords

mixing sequences
16
pulses mixing
12
design high-power
8
high-power broadband
8
broadband 180
8
180 degrees
8
degrees pulses
8
chemical shift
8
shift correlation
8
mixing
5

Similar Publications

Bovine babesiosis is a tick-borne disease that is caused by apicomplexan protozoan parasite in the genus of infections affect cattle health, reduce milk and meat production and lead to economic losses in tropical and subtropical countries. parasites are difficult to diagnose in the early stage of infections during low parasitemia and asymptomatic conditions led to the lack of treatment and control at the early stage of infection. This study aimed to integrate a molecular tool for the detection and genetic characterization of in small-scale livestock farming in Thailand, and to study the risk factors association with infections in small scale livestock farms in Thailand.

View Article and Find Full Text PDF

Background: Diseases caused by (MTB) and non-tuberculous mycobacteria (NTM) have similar clinical symptoms but require different treatments. Rapid and accurate identification of MTB and NTM is essential for proper patient management and treatment.

Methods: To develop and assess a multiplex real-time fluorescence PCR (Multiplex PCR) method for rapid identification of MTB, complex (MAC), M.

View Article and Find Full Text PDF

Background: Few studies have explored the association between DNA methylation and physical activity. The aim of this study was to evaluate the association of objectively measured hours of sedentary behavior (SB) and moderate physical activity (MPA) with DNA methylation. We further aimed to explore the association between SB or MPA related CpG sites and cardiometabolic traits, gene expression, and genetic variation.

View Article and Find Full Text PDF

Background: Salmonella enterica serovar Typhimurium is one of the most common serovars of Salmonella associated with clinical cases. It not only leads to diarrhea and mortality raised in livestock and poultry farming, but also poses a risk to food safety.

Results: In this study, a lytic bacteriophage named ZK22 was isolated and identified from sewage.

View Article and Find Full Text PDF

We investigate the impact of poly adenine (poly-A) sequences on the type and stability of liquid crystalline (LC) phases formed by concentrated solutions of gapped DNA (two duplex arms bridged by a flexible single strand) using synchrotron small-angle X-ray scattering and polarizing optical microscopy. While samples with mixed sequence form layered (smectic) phases, poly-A samples demonstrate a columnar phase at lower temperatures (5-35 °C), not previously observed in GDNA samples, and a smectic-B phase of exceptional stability at higher temperatures (35-65 °C). We present a model that connects the formation of these LC phases with the unique characteristics of poly-A sequences, which manifest in various biological contexts, including DNA condensation and nucleosome formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!