We have reported that in vitro culture (IVC) of preimplantation mouse embryos in the presence of FCS produces long-term effects (LTE) on development, growth and behaviour of the offspring at adult age. To analyse the mechanisms underlying this phenomenon, we have examined development and global alterations in gene expression in the mouse blastocysts produced in the presence of FCS, conditions known to be suboptimal and that generate LTE. Embryos cultured in vitro in KSOM and in KSOM+FCS had a reduced number of cells in the inner cell mass at the blastocyst stage compared with in vivo derived embryos; however, only culture in KSOM+FCS leads to a reduction in the number of trophoblast cells. Gene expression levels were measured by comparison among three groups of blastocysts (in vivo, IVC in KSOM and IVC in KSOM+FCS). Different patterns of gene expression and development were found between embryos cultured in vitro or in vivo. Moreover, when we compared the embryos produced in KSOM versus KSOM+FCS, we observed that the presence of FCS affected the expression of 198 genes. Metabolism, proliferation, apoptosis and morphogenetic pathways were the most common processes affected by IVC. However, the presence of FCS during IVC preferentially affected genes associated with certain molecular and biological functions related to epigenetic mechanisms. These results suggest that culture-induced alterations in transcription at the blastocyst stage related to epigenetic mechanisms provide a foundation for understanding the molecular origin at the time of preimplantation development of the long-term consequences of IVC in mammals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/REP-08-0265 | DOI Listing |
Sci Rep
January 2025
Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
For the purpose of this study, four natural rock samples-namely, diorite, granodiorite, tonalite, and granite-are being investigated about their radiation attenuation. The elemental composition of the rocks was obtained through Energy dispersive X-ray spectroscopy (EDX) which examines the microstructural and localized area elemental analyses of the four rock samples. A Monte Carlo simulation (MCNP) was used to determine and evaluate the investigated samples.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA.
We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States.
The ethylene-forming enzyme (EFE) is a Fe(II)/2-oxoglutarate (2OG) and l-arginine (l-Arg)-dependent oxygenase that primarily decomposes 2OG into ethylene while also catalyzing l-Arg hydroxylation. While the hydroxylation mechanism in EFE is similar to other Fe(II)/2OG-dependent oxygenases, the formation of ethylene is unique. Various redesign strategies have aimed to increase ethylene production in EFE, but success has been limited, highlighting the need for alternate approaches.
View Article and Find Full Text PDFJ Clin Lipidol
November 2024
PHAR, 324 South Beverly Drive, Suite 350, Beverly Hills, California 90212, USA.
Background: Familial chylomicronemia syndrome (FCS) is an ultrarare inherited disorder. Genetic testing is not always feasible or conclusive. European clinicians developed a "FCS score" to differentiate between FCS and multifactorial chylomicronemia syndrome (MCS), a more common condition with overlapping features.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
Recently, we have investigated the sensitivity of an mEGFP-linker-mScarlet-I construct (GE2.3) in response to macromolecular crowding using ensemble time-resolved two-photon (2P) fluorescence measurements [Mersch , 2024, (5), 3927-3940] as a point of reference for developing a single-molecule approach for Förster resonance energy transfer (FRET). Here, we investigate the fluorescence fluctuations, FRET, molecular brightness, and translational diffusion of GE2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!