The major histocompatibility complex (MHC) class I-related molecules A (MICA) is a stress-inducible cell surface antigen that is recognized by intestinal epithelial Vdelta1 gammadelta T cells, natural killer (NK) cells and CD8(+) T cells with NKG2D receptor participating in the immunological reaction in the intestinal mucosa. The present study aimed to investigate the functions of the MICA*A5.1 allele in the development of ulcerative colitis (UC) in the Chinese population. The microsatellite polymorphisms of MICA were genotyped in 124 unrelated Chinese patients with UC and 172 ethnically matched healthy controls using a semiautomatic fluorescently labelled polymerase chain reaction. MICA*A5.1-expressing Raji cells were generated by gene transfection. Cytotoxicity of NK cells to Raji cells expressing different MICA molecules was detected using the lactate dehydrogenase method. Soluble MICA in the culture supernatant was detected by enzyme-linked immunosorbent assay. The frequency of MICA*A5.1 was significantly higher in UC patients compared with the healthy controls (29.0% versus 17.4%, P = 0.001, corrected P = 0.005, OR = 1.936, 95% CI 1.310-2.863) and the frequency of a MICA*A5.1/A5.1 homozygous genotype was increased in UC patients (18.5% versus 7% in healthy controls, P = 0.0032, corrected P = 0.048, OR = 3.036, 95% CI 1.447-6.372). Raji cells with MICA*A5.1 expression produced more soluble MICA (t = 5.75, P < 0.01) than Raji cells with full-length MICA expression in culture supernatant. Raji cells with MICA*A5.1 expression were more resistant to killing by NK cells than Raji cells with full-length MICA expression. The MICA*A5.1 allele and MICA*A5.1/A5.1 genotype are significantly associated with Chinese UC patients in central China. MICA*A5.1 may play a role in the development of UC by producing more soluble MICA and resistance to NK cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753932PMC
http://dx.doi.org/10.1111/j.1365-2567.2008.02953.xDOI Listing

Publication Analysis

Top Keywords

raji cells
24
chinese patients
12
cells
12
healthy controls
12
soluble mica
12
major histocompatibility
8
histocompatibility complex
8
class i-related
8
i-related molecules
8
ulcerative colitis
8

Similar Publications

Microfluidic Assays for CD4 T Lymphocyte Counting: A Review.

Biosensors (Basel)

January 2025

Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ 08854, USA.

CD4 T lymphocytes play a key role in initiating the adaptive immune response, releasing cytokines that mediate numerous signal transduction pathways across the immune system. Therefore, CD4 T cell counts are widely used as an indicator of overall immunological health. HIV, one of the leading causes of death in the developing world, specifically targets and gradually depletes CD4 cells, making CD4 counts a critical metric for monitoring disease progression.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough for the treatment of hematological malignancies. However, to treat solid tumors and certain hematologic cancers, next-generation CAR-T cells require further genetic modifications to overcome some of the current limitations. Improving manufacturing processes to preserve cell health and function of edited T cells is equally critical.

View Article and Find Full Text PDF

Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.

Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.

View Article and Find Full Text PDF

Chemotherapy-induced cellular senescence promotes stemness of aggressive B-cell non-Hodgkin's lymphoma via CCR7/ARHGAP18/IKBα signaling activation.

J Immunother Cancer

January 2025

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China

Background: Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance.

Methods: This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!