The reuteransucrase enzymes of Lactobacillus reuteri strain 121 (GTFA) and L. reuteri strain ATCC 55730 (GTFO) convert sucrose into alpha-d-glucans (labelled reuterans) with mainly alpha-(1-->4) glucosidic linkages (50% and 70%, respectively), plus alpha-(1-->6) linkages. In the present study, we report a detailed analysis of various hybrid GTFA/O enzymes, resulting in the identification of specific regions in the N-termini of the catalytic domains of these proteins as the main determinants of glucosidic linkage specificity. These regions were divided into three equal parts (A1-3; O1-3), and used to construct six additional GTFA/O hybrids. All hybrid enzymes were able to synthesize alpha-glucans from sucrose, and oligosaccharides from sucrose plus maltose or isomaltose as acceptor substrates. Interestingly, not only the A2/O2 regions, with the three catalytic residues, affect glucosidic linkage specificity, but also the upstream A1/O1 regions make a strong contribution. Some GTFO derived hybrid/mutant enzymes displayed strongly increased transglucosylation/hydrolysis activity ratios. The reduced sucrose hydrolysis allowed the much improved conversion of sucrose into oligo- and polysaccharide products. Thus, the glucosidic linkage specificity and transglucosylation/hydrolysis ratios of reuteransucrase enzymes can be manipulated in a relatively simple manner. This engineering approach has yielded clear changes in oligosaccharide product profiles, as well as a range of novel reuteran products differing in alpha-(1-->4) and alpha-(1-->6) linkage ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2008.06729.x | DOI Listing |
Mar Genomics
March 2025
Shandong Jide Highway Co., Ltd, Dezhou, China. Electronic address:
Chitin, the most abundant polysaccharide in the ocean, is a kind of high molecular weight organic matter formed by N-acetyl-D-glucosamine (GlcNAc) via β-1,4-glucoside linkage. Degradation and recycling of chitin driven by marine bacteria are crucial for biogeochemical cycles of carbon and nitrogen in the ocean. Pseudoalteromonas sp.
View Article and Find Full Text PDFJ Poult Sci
January 2025
Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
Trehalose (Tre) is composed of two molecules of D-glucose joined by an α,α-1,1 glucosidic linkage. Because Tre is utilized by the gut microbiome and enhances gut immunity in chickens, it is used as a feed ingredient. However, taste preference and metabolic dynamics of Tre in chickens are not fully understood.
View Article and Find Full Text PDFBioresour Bioprocess
December 2024
Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
Hyaluronan (HA), a natural high molecular weight polysaccharide, has extensive applications in cosmetology and medical treatment. Hyaluronan-degrading enzymes (Hyals) act as molecular scissors that cleave HA by breaking the glucosidic linkage. Hyals are present in diverse organisms, including vertebrates, invertebrates and microorganisms, and play momentous roles in biological processes.
View Article and Find Full Text PDFMicroorganisms
November 2024
College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China.
J Lipid Res
November 2024
Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, RA Leiden, The Netherlands. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!