The charge transport through a single ruthenium atom clamped by two terpyridine hinges is investigated, both experimentally and theoretically. The metal-bis(terpyridyl) core is equipped with rigid, conjugated linkers of para-acetyl-mercapto phenylacetylene to establish electrical contact in a two-terminal configuration using Au electrodes. The structure of the [Ru(II)(L)(2)](PF(6))(2) molecule is determined using single-crystal X-ray crystallography, which yields good agreement with calculations based on density functional theory (DFT). By means of the mechanically controllable break-junction technique, current-voltage (I-V), characteristics of [Ru(II)(L)(2)](PF(6))(2) are acquired on a single-molecule level under ultra-high vacuum (UHV) conditions at various temperatures. These results are compared to ab initio transport calculations based on DFT. The simulations show that the cardan-joint structural element of the molecule controls the magnitude of the current. Moreover, the fluctuations in the cardan angle leave the positions of steps in the I-V curve largely invariant. As a consequence, the experimental I-V characteristics exhibit lowest-unoccupied-molecular-orbit-based conductance peaks at particular voltages, which are also found to be temperature independent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.200800390DOI Listing

Publication Analysis

Top Keywords

charge transport
8
calculations based
8
i-v characteristics
8
transport cardan-joint
4
cardan-joint molecule
4
molecule charge
4
transport single
4
single ruthenium
4
ruthenium atom
4
atom clamped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!