Novel room-temperature pathways to BaTiO(3) nanocrystals have been recently developed, which stand in contrast to traditional high-temperature methods. Peptide-assisted, bio-facilitated routes have been developed for low-temperature nanocrystal growth, in addition to two low-temperature routes completely independent of biomolecules. These innovative methods lay the groundwork for the facile production of nanoscale BaTiO(3) in economical and energy-efficient ways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.200800761 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ruhr-Universitat Bochum, Faculty of Chemistry and Biochemistry, Universitätsstraße 150, 44780, Bochum, GERMANY.
Cumulenes are molecules characterized by a series of consecutive double bonds. They serve as important reagents and intermediates in the synthesis of polymers and a wide variety of functionalized compounds, including various heterocycles. Understanding the properties of cumulenes and developing synthetic routes to these often highly reactive species is essential for unlocking new applications.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei Province, China.
Doramectin, a 16-membered macrocyclic lactone that is widely used in the treatment of mammalian parasitic diseases. Doramectin was produced by mutant using cyclohexanecarboxylic acid as a precursor. As a semi-synthetic insecticidal agent produced, the production of doramectin was low, which could not be satisfy the demands of industrial fermentation.
View Article and Find Full Text PDFEnviron Res
December 2024
Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket, 83120, Thailand. Electronic address:
Nitrate is a crucial nutrient in the natural nitrogen cycle. However, human activities have elevated nitrate levels in aquatic ecosystems beyond natural thresholds, posing risks to human health and the environment. In this work, ZnCl-doped mesoporous silica nanoparticles (ZnCl@MSN) were synthesized using a one-pot preparation method, leading to a streamlined process with reduced time and energy consumption.
View Article and Find Full Text PDFPhotochem Photobiol
December 2024
Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
Pyranoflavylium cations are synthetic analogues of pyranoanthocyanins, the much more color-stable compounds that are formed spontaneously from grape anthocyanins during the maturation of red wines. In the present work, our studies of the photophysical properties of pyranoanthocyanin analogues are extended to include nine pyranoflavylium cations substituted with one or two bromo and/or iodo heavy atoms. The room temperature fluorescence, 77 K fluorescence and phosphorescence, triplet formation in solution, and sensitized singlet oxygen formation, with excited state acidity suppressed by the addition of trifluoroacetic acid, are compared to those of similar pyranoflavylium cations that do not contain a heavy atom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!