Wavelength-stabilized compact laser systems at 670 nm on a micro-optical bench are presented. The resonator concept consists of a tapered semiconductor gain medium and a reflection Bragg grating as a wavelength selective resonator mirror. In pulse operation mode with 100 ns pulses, an optical peak power of 5 W with a spectral width below 150 pm was achieved. Nearly diffraction-limited beam quality at optical output powers up to 1 W is obtained. Such laser systems can be used, e.g., for Raman spectroscopy and as pumping sources for frequency conversion toward UV spectral range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.33.002692 | DOI Listing |
Chaos
January 2025
Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary.
The dynamics of electric power systems are widely studied through the phase synchronization of oscillators, typically with the use of the Kuramoto equation. While there are numerous well-known order parameters to characterize these dynamics, shortcoming of these metrics are also recognized. To capture all transitions from phase disordered states over phase locking to fully synchronized systems, new metrics were proposed and demonstrated on homogeneous models.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, China.
Two-dimensional (2D) black arsenic phosphorus (b-AsP) material has been attracting considerable attention for its extraordinary properties. However, its application in large-scale device fabrication remains challenging due to the limited scale and irregular shape. Here, we found the special effect of Te upon growth of b-AsP and developed a novel Te-regulated steady growth (Te-SG) strategy to obtain high-quality b-AsP single crystal.
View Article and Find Full Text PDFHeliyon
January 2025
Universidad de Cuenca, Laboratorio de Ecología Acuática (LEA), Balzay Campus, Cuenca, 010107, Ecuador.
Installing photovoltaic systems (PVs) on building rooftops is a viable and sustainable alternative to meet the growing demand for electricity in cities. This work develops a methodology that uses LiDAR (laser imaging detection and ranging) technology and roof footprints to obtain a three-dimensional representation of the rooftops in the urban centre of Santa Isabel (Azuay, Ecuador). This allowed the determination of characteristics such as area, slope, orientation, and received solar radiation, making it possible to calculate the rooftop's theoretical, technical, and economic photovoltaic potential.
View Article and Find Full Text PDFPhysiother Res Int
January 2025
Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
Background And Purpose: Children with myopathies often experience muscle weakness in their lower limbs. However, the upper limbs are also affected and, at the same time, play a key role in daily living activities as well as in transfers and assisted mobility using auxiliary devices. The objective was to assess the performance of the elbow flexor and extensor muscles through static and dynamic contractions in children with myopathies and in their typical peers.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, U.K.
Accurate prediction of chlorophyll- (Chl-) concentrations, a key indicator of eutrophication, is essential for the sustainable management of lake ecosystems. This study evaluated the performance of Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) and three traditional machine learning tools (RF, SVR, and GPR) for predicting time-series Chl- concentrations in large lakes. Monthly remote-sensed Chl- data derived from Aqua-MODIS spanning September 2002 to April 2024 were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!