Background: Decreased peritubular capillary (PTC) flow due to impaired endothelial function elicits tubulointerstitial ischaemia, thereby enhancing renal damage in chronic kidney disease, including diabetic nephropathy. Since nitric oxide (NO) is a vasodilator and known to play an important role in the maintenance of PTC flow, it is conceivable that asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase, may cause tubulointerstitial ischaemia, thus being involved in the progression of diabetic nephropathy. In this study, we investigated whether overexpression of dimethylarginine dimethylaminohydrolase (DDAH), an enzyme that degrades ADMA, could improve tubulointerstitial ischaemia in streptozotocin (STZ)-induced diabetic rats.
Methods: Recombinant adenovirus vector encoding DDAH-I (Adv-DDAH) or control vector expressing bacterial beta-galactosidase (Adv-LZ) was intravenously administrated to diabetic rats. Three days after the treatment, effects of DDAH overexpression on plasma or urinary levels of ADMA or NO metabolites (NOx), tubulointerstitial ischaemia and renal expression of transforming growth factor-beta (TGF-beta) were evaluated.
Results: Renal DDAH expression and activity were reduced in diabetic rats. Urinary levels of ADMA and TGF-beta were increased, while NOx levels were decreased in diabetic rats. Compared with control rats, pimonidazole-detected hypoxic areas were larger in the kidney of diabetic rats, although the number of capillaries in tubulointerstitial regions was not different between the two groups. In addition, renal expression levels of hypoxia-inducible factor-1alpha (HIF-1alpha) and TGF-beta were also increased in diabetic rats. DDAH overexpression significantly inhibited the increase of ADMA and the decrease of NOx and subsequently decreased urinary albumin excretion levels and ameliorated tubulointerstitial hypoxia and HIF-1alpha as well as TGF-beta expression in diabetic rats.
Conclusion: The present study demonstrated for the first time that the suppression of ADMA by DDAH overexpression could improve tubulointerstitial ischaemia and subsequent renal damage in experimental diabetic nephropathy. Substitution of DDAH protein or enhancement of its activity may become a novel therapeutic strategy for the treatment of early diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ndt/gfn630 | DOI Listing |
Mol Med
December 2024
Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
Background: We have previously reported that the gap junction protein connexin 43 (Cx43) was upregulated in chronic renal disease in humans and rodents and plays a crucial role in the progression of experimental nephropathy. In this study, we investigated its role after renal ischemia/reperfusion (rIR), which is a major mechanism of injury in acute renal injury (AKI) and renal transplant graft dysfunction.
Methods: Wild-type mice (WT) and mice in which Cx43 expression was genetically reduced by half (Cx43 ±) were unilaterally nephrectomized.
J Am Soc Nephrol
December 2024
Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.
Kidney360
December 2024
Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan.
Transplant Proc
December 2024
Department of Internal Medicine, Marmara University Faculty of Medicine, Istanbul, Turkey.
Purpose: Reducing renal ischemia is crucial for the function and survival of grafts from nonheartbeat donors, as it leads to inflammatory responses and tubulointerstitial damage. The primary concern with organs from nonheartbeat donors is the long warm ischemia period and reperfusion injury following renal transplantation. This study had two main goals; one goal is to determine how Necrostatin-1 targeting the PANoptosome affects PANoptosis in the nonheart-beating donor rat model.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Department of Nephrology, Leicester-Nantong Joint Institute of Kidney Science, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!