Theory of mind (ToM)--our ability to predict behaviors of others in terms of their underlying intentions--has been examined through false-belief (FB) tasks. We studied 12 Japanese early bilingual children (8-12 years of age) and 16 late bilingual adults (18-40 years of age) with FB tasks in Japanese [first language (L1)] and English [second language (L2)], using fMRI. Children recruited more brain regions than adults for processing ToM tasks in both languages. Moreover, children showed an overlap in brain activity between the L1 and L2 ToM conditions in the medial prefrontal cortex (mPFC). Adults did not show such a convergent activity in the mPFC region, but instead, showed brain activity that varied depending on the language used in the ToM task. The developmental shift from more to less ToM specific brain activity may reflect increasing automatization of ToM processing as people age. These results also suggest that bilinguals recruit different resources to understand ToM depending on the language used in the task, and this difference is greater later in life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2569814PMC
http://dx.doi.org/10.1093/scan/nsm039DOI Listing

Publication Analysis

Top Keywords

brain activity
12
years age
8
depending language
8
tom
6
switching language
4
language switches
4
switches mind
4
mind linguistic
4
linguistic effects
4
effects developmental
4

Similar Publications

State-dependent neurovascular modulation induced by transcranial ultrasound stimulation.

Med Biol Eng Comput

January 2025

School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China.

Previous studies reported baseline state-dependent effects on neural and hemodynamic responses to transcranial ultrasound stimulation. However, due to neurovascular coupling, neither neural nor hemodynamic baseline alone can fully explain the ultrasound-induced responses. In this study, using a general linear model, we aimed to investigate the roles of both neural and hemodynamic baseline status as well as their interactions in ultrasound-induced responses.

View Article and Find Full Text PDF

To protect the body from infections, the brain has evolved the ability to coordinate behavioral and immunological responses. The conditioned immune response (CIR) is a form of Pavlovian conditioning wherein a sensory (for example, taste) stimulus, when paired with an immunomodulatory agent, evokes aversive behavior and an anticipatory immune response after re-experiencing the taste. Although taste and its valence are represented in the anterior insular cortex and immune response in the posterior insula and although the insula is pivotal for CIRs, the precise circuitry underlying CIRs remains unknown.

View Article and Find Full Text PDF

Behavioral and neurophysiological effects of electrical stunning on zebrafish larvae.

Lab Anim (NY)

January 2025

Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany.

Two methods dominate the way that zebrafish larvae are euthanized after experimental procedures: anesthetic overdose and rapid cooling. Although MS-222 is easy to apply, this anesthetic takes about a minute to act and fish show aversive reactions and interindividual differences, limiting its reliability. Rapid cooling kills larvae after several hours and is not listed as an approved method in the relevant European Union directive.

View Article and Find Full Text PDF

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!