Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide variety of infections that are responsible for significant morbidity, mortality and costs to our healthcare system. An efficacious vaccine against ExPEC would be desirable. Previously, we demonstrated that nasal immunization with a genetically engineered strain in which capsule and O-antigen are no longer expressed (CP923) was immunogenic, generated antibodies that bound a subset of heterologous ExPEC strains, and enhanced neutrophil-mediated bactericidal activity against the homologous and a heterologous strain in vitro. In the work reported here we tested the hypothesis that nasal immunization with CP923 conferred protection in a mouse intravenous sepsis model. Nasal immunization with the wild-type strain CP9 conferred protection against challenge with itself and this protection was enhanced when IL-12 was used as an adjuvant. However, when CP923 was used the immunogen, protection was not observed against challenge with CP9. Next, we hypothesized that the observed lack of protection may be due to capsule and the O-antigen moiety of lipopolysaccharide (LPS) impeding antibody binding to non-capsule and O-antigen epitopes. This hypothesis was substantiated by in vitro binding assays, which demonstrated that binding of polyclonal anti-CP923 antisera was decreased when capsule and/or O-antigen were present. Lastly, neutrophil-mediated bactericidal activity against CP923, opsonisized with anti-CP923 antisera, was significantly increased compared to CP9. Taken together, these results demonstrate that the capsule and O-antigen form a biologically significant barrier against antibodies directed against non-capsular and O-antigen epitopes. This defense against the acquired immune response will need to be overcome for the development of a successful vaccine against ExPEC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2008.10.082DOI Listing

Publication Analysis

Top Keywords

nasal immunization
12
capsule o-antigen
12
antibody binding
8
extraintestinal pathogenic
8
pathogenic escherichia
8
escherichia coli
8
vaccine expec
8
neutrophil-mediated bactericidal
8
bactericidal activity
8
conferred protection
8

Similar Publications

Pig nasal and rectal microbiotas are involved in the antibody response to Glaesserella parasuis.

Sci Rep

January 2025

Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.

Vaccination stands as one of the most sustainable and promising strategies to control infectious diseases in animal production. Nevertheless, the causes for antibody response variation among individuals are poorly understood. The animal microbiota has been shown to be involved in the correct development and function of the host immunity, including the antibody response.

View Article and Find Full Text PDF

The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach.

View Article and Find Full Text PDF

Human nasal epithelium (HNE) organoid models of SARS-CoV-2 infection were adopted globally during the COVID-19 pandemic once it was recognized that the Vero cell line commonly used by virologists did not recapitulate human infection. However, the widespread use of HNE organoid infection models was hindered by the high cost of media and consumables, and the inherent limitation of basal cells as a scalable continuous source of cells. The human Calu-3 cell line, generated from a lung adenocarcinoma, was shown to largely recapitulate infection of the human epithelium and to preserve the SARS-CoV-2 genomic fidelity.

View Article and Find Full Text PDF

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2.

View Article and Find Full Text PDF

Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhea and Neisseria meningitidis, a leading cause of bacterial meningitis and septicemia, are closely related human-restricted pathogens that inhabit distinct primary mucosal niches. While successful vaccines against invasive meningococcal disease have been available for decades, the rapid rise in antibiotic resistance has led to an urgent need to develop an effective gonococcal vaccine. Several surface antigens are shared among these two pathogens, making cross-species protection an exciting prospect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!