Ricin A-chain can inactivate eukaryotic ribosomes, but exhibits no N-glycosidase activity on intact E. coli ribosomes. In the present research, in order to avoid using radiolabeled oligoribonucleotides, two kinds of synthetic 5'-FAM fluorescence-labeled oligoribonucleotide substrates were used to mimic the sarcin/ricin domains of rat 28S rRNA and E. coli 23S rRNA (32mer and 25mer, named as Rat FAM-SRD and E. coli FAM-SRD, respectively). Ricin A-chain was able to specifically release adenine from the first adenosine of the GAGA tetraloop and exhibited specific N-glycosidase activity under neutral and weak acidic conditions with both substrates. However, under more acidic conditions, ricin A-chain was able to release purines from other sites on eukaryotic substrates, but it retained specific depurination activity on prokaryotic substrates. At pH 5.0, the Michaelis constant (K(m)) for the reaction with Rat FAM-SRD (4.57+/-0.28microM) corresponded to that with E. coli FAM-SRD (4.64+/-0.26microM). However, the maximum velocity (V(max)) for ricin A-chain with Rat FAM-SRD was 0.5+/-0.024microM/min, which is higher than that with E. coli FAM-SRD (0.32+/-0.011microM/min).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2008.10.005 | DOI Listing |
Microorganisms
December 2024
Targeted Therapy Team, Institute for Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Applied Biological Chemistry, Graduate School of Environmental Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan.
Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.
View Article and Find Full Text PDFiScience
December 2024
Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
We present the results of a GC-MS and UHPLC-MS analysis of residue recovered from the marrow cavity of a 7,000-year-old bovid femur from Kruger Cave, South Africa. The femur was filled with an unknown substance into which were embedded three bone arrowheads, indicating that the femur served as a quiver. Our results reveal the presence of digitoxin and strophanthidin, both cardiac glycosides associated with hunting poisons.
View Article and Find Full Text PDFArch Toxicol
December 2024
Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, #408, 4th Floor, Warangal, 506004, India.
Shiga toxin is the leading cause of food poisoning in the world. It is structurally similar to the plant type II ribosome-inactivating proteins (RIPs) and retains N-glycosidase activity. It acts specifically by depurinating the specific adenine A4605 of human 28S rRNA, ultimately inhibiting translation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!