Background: Animal models and observations in human neonates suggest fetal exocrine pancreas vulnerability to reduced maternofetal blood flow. We investigated the relationship between superior mesenteric artery blood flow velocity (sma bfv) and exocrine pancreatic function, in a cohort of very low birth weight (VLBW) babies. Group 1: 9 babies < 3rd percentile for birth weight. Antenatally, all had absent or reversed diastolic flow on Doppler ultrasound of the umbilical artery (UA). Group 2: 18 babies > 10th percentile for birth weight.
Findings: All had Doppler ultrasound scan of the superior mesenteric artery (sma), by same operator (RMN), on day 1 of life before commencement of enteral feeding. Stool samples assayed for faecal chymotrypsin and weekly serum samples assayed for amylase and lipase (kinetic colorimetric assay) from days 1 to 14 of life.Growth restricted babies had significantly lower sma bfv values compared with appropriately grown preterm babies. Faecal chymotrypsin levels were also lower but this difference did not achieve statistical significance. Both groups had serum lipase levels detectable in adult concentrations. Serum amylase was undetectable in either group.
Conclusion: Babies with previous in-utero blood flow redistribution may exhibit altered gut ontogeny with re-setting of mesenteric blood flow velocities and altered exocrine pancreatic function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612675 | PMC |
http://dx.doi.org/10.1186/1756-0500-1-115 | DOI Listing |
Mol Biol Rep
January 2025
State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
Background: Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden.
Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.
View Article and Find Full Text PDFBackground And Objective: Sickle cell disease (SCD) is a vascular disease that may affect the retina. This study aimed to evaluate differences in average velocity (AV, mm/s), blood flow (BF, μL/min) and vessel diameter (VD, μm) from the temporal retinal arcades in SCD compared to healthy eyes using Doppler optical coherence tomography (DOCT).
Patients And Methods: A cross-sectional study was conducted between 2021 and 2023.
J Exp Biol
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!