Background: The Kv2.1 delayed-rectifier K+ channel regulates membrane excitability in hippocampal neurons where it targets to dynamic cell surface clusters on the soma and proximal dendrites. In the past, Kv2.1 has been assumed to be absent from the axon initial segment.
Results: Transfected and endogenous Kv2.1 is now demonstrated to preferentially accumulate within the axon initial segment (AIS) over other neurite processes; 87% of 14 DIV hippocampal neurons show endogenous channel concentrated at the AIS relative to the soma and proximal dendrites. In contrast to the localization observed in pyramidal cells, GAD positive inhibitory neurons within the hippocampal cultures did not show AIS targeting. Photoactivable-GFP-Kv2.1-containing clusters at the AIS were stable, moving <1 microm/hr with no channel turnover. Photobleach studies indicated individual channels within the cluster perimeter were highly mobile (FRAP tau=10.4+/-4.8 sec), supporting our model that Kv2.1 clusters are formed by the retention of mobile channels behind a diffusion-limiting perimeter. Demonstrating that the AIS targeting is not a tissue culture artifact, Kv2.1 was found in axon initial segments within both the adult rat hippocampal CA1, CA2, and CA3 layers and cortex.
Conclusion: In summary, Kv2.1 is associated with the axon initial segment both in vitro and in vivo where it may modulate action potential frequency and back propagation. Since transfected Kv2.1 initially localizes to the AIS before appearing on the soma, it is likely multiple mechanisms regulate Kv2.1 trafficking to the cell surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592246 | PMC |
http://dx.doi.org/10.1186/1471-2202-9-112 | DOI Listing |
Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Service ENMG et de Pathologies Neuromusculaires, Centre de référence Des Maladies Neuromusculaires PACA-Réunion-Rhône Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.
Introduction/aims: Finger Extension Weakness and DOwnbeat Nystagmus Motor Neuron Disease (FEWDON-MND) is characterized by motor weakness predominantly affecting finger extension, accompanied by downbeat nystagmus. To date, only 11 patients have been reported. The present study adds a further three and aims to provide a more detailed description of the electrodiagnostic features of these patients.
View Article and Find Full Text PDFMult Scler Relat Disord
January 2025
Department of Neurology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St Louis, MO 63110, USA. Electronic address:
Background: Prognostic biomarkers at multiple sclerosis (MS) onset to predict disease severity may help guide initial therapy selection for people with MS. Over 20 disease-modifying treatments (DMTs) of varying levels of risk and efficacy now exist. The ability to predict MS severity would help to identify those patients at higher risk where a highly effective, but potentially risky, therapy would be optimal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!