A targeted neuropharmacological, (1)H/(13)C NMR spectroscopy and multivariate statistical approach was used to examine the effects of exogenous GABA and ligands at the GABA(A) receptor family on brain metabolism in the Guinea pig cortical tissue slice. All ligands at GABA(A) receptors generated metabolic patterns which were distinct from one another with the major variance in the data arising because of metabolic work (shown by net flux into Krebs cycle byproducts and increased metabolic pool sizes). Three major clusters of metabolic signatures were identified which corresponded to: (i) activity at phasic (synaptic) GABA(A) receptors, dominated by alpha1-containing receptors and responsive to GABA at 10 micromol/L; (ii) activity at perisynaptic receptors, dominated by response to high (40 micromol/L) GABA and the superagonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride, and C, activity at extrasynaptic receptors, dominated by response to low (0.1-1.0 micromol/L) GABA, zolpidem (400 nmol/L) and the non-specific allosteric modulator RO19-4603 (1 nmol/L). These results highlight the utility of a different but robust approach to study of the GABAergic system using metabolic systems analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2008.05742.xDOI Listing

Publication Analysis

Top Keywords

receptors dominated
12
gabaa receptor
8
ligands gabaa
8
gabaa receptors
8
dominated response
8
micromol/l gaba
8
gaba
5
receptors
5
metabolic
5
understanding inhibitions
4

Similar Publications

Unlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.

View Article and Find Full Text PDF

Background And Aims: Familial hypercholesterolemia (FH) and other disorders with similar features are common genetic disorders that remain underdiagnosed and undertreated, due in part to the cost of screening. The aim of this study was to design and implement a whole gene targeted NGS panel for the molecular diagnosis of FH and statin intolerance with an emphasis on high quality variant calling, including copy number analysis.

Methods: A whole gene panel for hybridisation-based short read NGS was designed for the dominant FH-genes low density lipoprotein receptor (), apolipoprotein B (APOB), proproteinconvertas subtilisin/kexin type 9 (PCSK9), apolipoprotein E (APOE) and the recessive FH-genes low density lipoprotein receptor adaptor protein 1 (), ATP binding cassette subfamily member 5/8 (ABCG5/8) and lipase A, lysosomal acid type (), as well as solute carrier organic anion transporter family member 1B1 (), not an FH gene but linked to statin intolerance.

View Article and Find Full Text PDF

Background And Aims: Refractory celiac disease type II (RCDII) is characterized by a clonally expanded aberrant cell population in the small intestine. The role of other tissue-resident immune subsets in RCDII is unknown. Here, we characterized CD8 and CD4 T cells in RCDII duodenum at the single-cell level and .

View Article and Find Full Text PDF

Nano-polymeric platinum activates PAR2 gene editing to suppress tumor metastasis.

Biomaterials

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China. Electronic address:

Metastasis as the hallmark of cancer preferentially contributes to tumor recurrence and therapy resistance, aggrandizing the lethality of patients with cancer. Despite their robust suppressions of tumor progression, chemotherapeutics failed to attenuate cancer cell migration and even triggered pro-metastatic effects. In parallel, protease-activated receptor 2 (PAR2), a member of the G protein-coupled receptor subfamily, actively participates in cancer metastasis via multiple signal transduction pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!