We examined metabolic profiles of acetone and butanol extracts obtained from the leaves of 18 seedlings of the Bulgarian wine-making cultivar Storgozia. The acetone extracts contained the components from the leaf surface, while the butanol extracts were enriched with polar components from inside the leaf tissue. The leaves displayed different degrees of resistance and susceptibility to the etiological agent downy mildew, Plasmopara viticola. Based on the statistically significant correlations (P<0.05) between the GC-MS data of the identified metabolites and the estimated leaf resistances, 10 individual components were proposed as possible biomarkers for the downy mildew resistance and susceptibility in grapevine. All were found in the butanol extracts, and can be considered to form two groups: compounds with high correlations (r=+/-0.50 to +/-1.00) - 3-hydroxybutanoic acid, 2,3,4-trihydroxybutanoic acid, 2,3,4-trihydroxybutanoic acid (isomer), hexadecanoic acid, 3-hydroxyhexanoic acid and myo-inositol, and compounds with moderate correlations (r=+/-0.30 to +/-0.49) hydroxybutanedioic acid, alanine, glutamine, arabinoic acid and aldohexoses. Among them, the more polar compounds were related to sensitivity, and only hexadecanoic and the monohydroxycarboxylic acids were related to resistance in grapevine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2008.08.008 | DOI Listing |
Mamm Genome
January 2025
Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Pathology, National Institute of Cardiovascular Diseases, Karachi, Pakistan.
Objective: To determine the frequency of multidrug-resistant (MDR) bacterial isolates in respiratory specimens obtained from ventilated patients admitted to critical care units at the National Institute of Cardiovascular Diseases (NICVD), along with COVID-19-positive cases.
Study Design: An observational study. Place and Duration of the Study: National Institute of Cardiovascular Diseases, between November 2021 and March 2022.
Mol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFCrit Care
January 2025
Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
Background: Carbapenem-Resistant Gram-Negative Bacteria, including Carbapenem-Resistant Enterobacterales (CRE) and Carbapenem-Resistant Pseudomonas aeruginosa (CRPA), are common causes of infections in intensive care units (ICUs) in Italy.
Objective: This prospective observational study evaluated the epidemiology, management, microbiological characterization, and outcomes of hospital-acquired CRE or CRPA infections treated in selected ICUs in Italy.
Methods: The study included patients with hospital-acquired infections due to CRE and CRPA treated in 20 ICUs from June 2021 to February 2023.
Ann Clin Microbiol Antimicrob
January 2025
Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan.
Background: Nemonoxacin is a new quinolone with an antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Certain sequence types (STs) have been emerging in Taiwan, including fluoroquinolone-resistant ST8/USA300. It's an urgent need to determine nemonoxacin susceptibility against ST8/USA300 and other emerging lineages, if any.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!