As materials are produced at smaller scales, the properties that make them especially useful for biological applications such as drug delivery, imaging or sensing applications also render them potentially harmful. There has been a reasonable amount of work addressing the interactions of biological fluids at material surfaces that demonstrates the high affinity of protein for particle surfaces and some looking at the role of particle surface chemistry in cellular associations, but mechanisms have been too little addressed outside the context of intended, specific interactions. Here, using cultured endothelium as a model for vascular transport, we demonstrate that the capacity of nanoparticle surfaces to adsorb protein is indicative of their tendency to associate with cells. Quantification of adsorbed protein shows that high binding nanoparticles are maximally coated in seconds to minutes, indicating that proteins on particle surfaces can mediate cell association over much longer time scales. We also remove many of the most abundant proteins from culture media which alters the profile of adsorbed proteins on nanoparticles but does not affect the level of cell association. We therefore conclude that cellular association is not dependent on the identity of adsorbed proteins and therefore unlikely to require specific binding to any particular cellular receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2008.09.050 | DOI Listing |
ACS Food Sci Technol
January 2025
Department of Food Technology, Engineering and Science, Universitat de Lleida - Agrotecnio CeRCA Center, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
Enzyme catalysis is important in food processing, such as in baking, dairy, and fiber processing and beverages. A recent advancement in catalysis is the development of Pickering emulsions as enzymatic catalytic systems; however, the use of Pickering emulsions (PEs) as catalytic systems in foods remains largely underdeveloped. Challenges exist that inhibit the widespread adoption of PEs as catalytic systems in foods.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China.
In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques.
View Article and Find Full Text PDFACS Earth Space Chem
January 2025
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands.
Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Development of novel Gd-based contrast agents for targeted magnetic resonance imaging (MRI) of liver cancer remains a great challenge. Herein we reported a novel Gd-based MRI contrast agent with improved relaxivity for specifically diagnosing liver cancer. This GSH-responsive macromolecular contrast agent (mCA), POLDGd, was prepared by RAFT polymerization, and its lactic acid moiety could precisely target the ASGP-R surface protein on liver cancer cells, whereas PODGd without the lactic acid moiety was prepared as a control.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China.
Dynamic high-pressure microfluidization (DHPM) is an emerging treatment technology and has been widely used for the recovery of natural polysaccharides. The aim of the present contribution is to discuss the DHPM-assisted extraction and processing of polysaccharides from some foods and by-products by reviewing the instrument and working principle, procedures, key parameters, and effects of DHPM on the structures, food properties, and bioactivities of resulting polysaccharides. It was found that a DHPM instrument with Z-type chamber is preferable for extracting polysaccharides, and a DHPM with Y-type chamber is applicable for processing polysaccharides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!