The p75 neurotrophin receptor (p75(NTR)) is a member of the tumour necrosis factor superfamily, which relies on the recruitment of cytosolic protein partners including the tumour necrosis factor receptor-associated factor 6 (TRAF6) E3 ubiquitin ligase to produce cellular responses. Recently, p75(NTR) was also shown to undergo presenilin-dependent, gamma-secretase-mediated regulated intramembrane proteolysis. In this study, we report the characterization of a highly conserved TRAF6-binding site (PxExxAr/Ac) in presenilin-1 (PS1) that mediates nerve growth factor (NGF)-induced association between PS1 and TRAF6. We demonstrate that disruption of this interaction between PS1 and TRAF6 inhibits TRAF6 autoubiquitination and gamma-secretase cleavage of p75(NTR). Additionally, we show that PS1-deficiency antagonizes NGF-induced I-kappaB degradation. Finally, we also show that p75(NTR) is a substrate for TRAF6-mediated ubiquitination and that TRAF6 E3 ligase activity is required for regulated intramembrane proteolysis of p75(NTR). In summary, our data suggest that an NGF-induced association between PS1 and TRAF6 influences regulated intramembrane proteolysis of p75(NTR).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2008.05763.x | DOI Listing |
Tissue Cell
December 2024
Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong Province, China. Electronic address:
Histocompatibility minor 13 (HM13) is a signal sequence stubbed intramembrane cleavage catalytic protein. Increasing evidence supports the association among HM13 expression, tumor-infiltrating immune cells (TIICs), and cancer. However, its role on formation and progression of colorectal cancer (CRC) has not been explored.
View Article and Find Full Text PDFBMC Biol
December 2024
College of Fisheries, Hubei Hongshan Laboratory/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
Background: Intermuscular bones (IBs) are segmental intramembranous ossifications located within myosepta. They share similarities with tendon ossification, a form of heterotopic ossification (HO). The mechanisms underlying IB formation remain incompletely understood.
View Article and Find Full Text PDFFront Aging Neurosci
November 2024
Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China.
EMBO J
December 2024
Institute of Biochemistry, Kiel University, Kiel, Germany.
Nature
November 2024
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
Human embryonic bone and joint formation is determined by coordinated differentiation of progenitors in the nascent skeleton. The cell states, epigenetic processes and key regulatory factors that underlie lineage commitment of these cells remain elusive. Here we applied paired transcriptional and epigenetic profiling of approximately 336,000 nucleus droplets and spatial transcriptomics to establish a multi-omic atlas of human embryonic joint and cranium development between 5 and 11 weeks after conception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!