NPI-2358 (1) is a potent antimicrotubule agent that was developed from a natural diketopiperazine, phenylahistin, which is currently in Phase I clinical trials as an anticancer drug. To understand the precise recognition mechanism of tubulin by this agent, we focused on its potent derivative, KPU-244 (2), which has been modified with a photoreactive benzophenone structure, and biotin-tagged KPU-244 derivatives (3 and 4), which were designed and synthesized for tubulin photoaffinity labeling. Introduction of the biotin structure at the p'-position of the benzophenone ring in 2 exhibited reduced, but significant biological activities with tubulin binding, tubulin depolymerization and cytotoxicity in comparison to the parent KPU-244. Therefore, tubulin photoaffinity labeling studies of biotin-derivatives 3 and 4 were performed by using Western blotting analysis after photoirradiation with 365 nm UV light. The results indicated that tubulin was covalently labeled by these biotin-tagged photoprobes. The labeling of compound 4 was competitively inhibited by the addition of diketopiperazine 1 or colchicine, and weakly inhibited by the addition of vinblastine. The results suggest that photoaffinity probe 4 specifically recognizes tubulin at the same binding site as anticancer drug candidate 1, and this leads to the disruption of microtubules. Probe 4 serves well as a useful chemical probe for potent antimicrotubule diketopiperazines, much like phenylahistin, and it also competes for the colchicine-binding site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.200800317 | DOI Listing |
Org Biomol Chem
December 2024
State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
Asiatic acid (AA) is a naturally occurring pentacyclic triterpene isolated from and has various biological effects, most notably anticancer effects. While numerous investigations have demonstrated the possible mechanism underlying AA's anticancer action, the precise protein target of AA remains unclear. In this study, the protein target of AA in HepG2 hepatoma cells was identified using the ABPP-based chemoproteomic approach.
View Article and Find Full Text PDFChemMedChem
April 2024
Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Studies have shown that depending on the substitution pattern, microtubule (MT)-targeting 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) can produce different cellular responses in mammalian cells that may be due to these compounds interacting with distinct binding sites within the MT structure. Selected TPDs are also potently bioactive against the causative agent of human African trypanosomiasis, Trypanosoma brucei, both in vitro and in vivo. So far, however, there has been no direct evidence of tubulin engagement by these TPDs in T.
View Article and Find Full Text PDFExp Mol Med
December 2022
Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea.
Neuroinflammation is one of the critical processes implicated in central nervous system (CNS) diseases. Therefore, alleviating neuroinflammation has been highlighted as a therapeutic strategy for treating CNS disorders. However, the complexity of neuroinflammatory processes and poor drug transport to the brain are considerable hurdles to the efficient control of neuroinflammation using small-molecule therapeutics.
View Article and Find Full Text PDFJ Med Chem
March 2022
Oncology Research, Amgen Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States.
Chromosomal instability (CIN) is a hallmark of cancer that results from errors in chromosome segregation during mitosis. Targeting of CIN-associated vulnerabilities is an emerging therapeutic strategy in drug development. KIF18A, a mitotic kinesin, has been shown to play a role in maintaining bipolar spindle integrity and promotes viability of CIN cancer cells.
View Article and Find Full Text PDFJ Nat Prod
March 2022
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States.
Photoaffinity labeling approaches have historically been used in pharmacology to identify molecular targets. This methodology has played a pivotal role in identifying drug-binding domains and searching for novel compounds that may interact at these domains. In this review we focus on studies of microtubule stabilizing agents of natural product origin, specifically taxol (paclitaxel).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!