T cells possess a p38 activation alternative pathway in which stimulation via the antigen receptor (T-cell receptor [TCR]) induces phosphorylation of p38alpha and beta on Tyr323. To assess the contribution of this pathway to normal T-cell function, we generated p38alpha knockin mice in which Tyr323 was replaced with Phe (p38alpha(Y323F)). TCR-mediated stimulation failed to activate p38alpha(Y323F) as measured by phosphorylation of the Thr-Glu-Tyr activation motif and p38alpha catalytic activity. Cell-cycle entry was delayed in TCR-stimulated p38alpha(Y323F) T cells, which also produced less interferon (IFN)-gamma than wild-type T cells in response to TCR-mediated but not TCR-independent stimuli. p38alpha(Y323F) mice immunized with T-helper 1 (Th1)-inducing antigens generated normal Th1 effector cells, but these cells produced less IFN-gamma than wild-type cells when stimulated through the TCR. Thus, the Tyr323-dependent pathway and not the classic mitogen-activated protein (MAP) kinase cascade is the physiologic means of p38alpha activation through the TCR and is necessary for normal Th1 function but not Th1 generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652368 | PMC |
http://dx.doi.org/10.1182/blood-2008-04-153304 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biochemistry, Brandeis University, Waltham, MA 02454.
Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase toward the active state.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
Background: Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:
The molecular underpinnings of high-grade endometrial carcinoma (HGEC) metastatic growth and survival are poorly understood. Here, we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic, and metabolomic landscapes compared with conventional 2D monolayers. Using a genetic screening platform, we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture.
View Article and Find Full Text PDFNutrients
November 2024
Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea.
Background/objectives: Particulate matter (PM) is an environmental pollutant that negatively affects human health, particularly skin health. In this study, we investigated the inhibitory effects of broccoli sprout extract (BSE) on PM-induced skin aging and inflammation in human keratinocytes.
Methods: HaCaT keratinocytes were pretreated with BSE before exposure to PM.
J Biol Chem
December 2024
Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain. Electronic address:
Hyperosmotic shock induces cytochrome c release and caspase-3 activation in Xenopus oocytes. Different signaling pathways engaged by osmostress converge on the mitochondria to trigger cell death. The mitogen-activated protein kinases (MAPKs) JNK1-1 and JNK1-2 are early activated by hyperosmotic shock and sustained activation of both isoforms accelerates the apoptotic program.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!