Purpose: This study was designed to elucidate the role of inflammatory process in diabetic retinopathy and to investigate the effect of baicalein treatment on diabetic rat.
Methods: Retinal microglial cells were identified with CD11b antibody, and retinal Müller cells were identified with glial fibrillary acidic protein (GFAP). The gene expression of interleukin (IL)-18, tumor necrosis factor (TNF)-alpha, and IL-1beta was examined by quantitative real-time PCR. The expression of GFAP and vascular endothelial growth factor (VEGF) was examined by quantitative real-time PCR, immunohistochemistry, and Western blot analysis. Vascular permeability was measured in vivo by bovine serum albumin conjugated with FITC. Baicalein was given by oral administration (150 mg/kg/d) with an animal feeding needle beginning 5 days after streptozotocin (STZ) injection.
Results: By 24 weeks after onset of diabetes, microglial cells were activated and proliferated, and Müller cells upregulated their GFAP and VEGF expression. Pro-inflammatory factors, including IL-18, TNF-alpha, and IL-1beta, were significantly upregulated. Obvious vascular leakage and abnormality were demonstrated, and ganglion cell loss was significant. Baicalein treatment ameliorated diabetes-induced microglial activation and pro-inflammatory expression, reduced the GFAP and VEGF expression from Müller cells, and significantly reduced vascular abnormality and ganglion cell loss within the retina.
Conclusions: Inflammatory process, characterized by microglial activation and Müller cells dysfunction, was implicated in STZ-induced diabetic retinopathy. Baicalein treatment ameliorated inflammatory process, and therefore inhibited vascular abnormality and neuron loss in diabetic retinas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.08-2642 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!