Analysis of re-replication from deregulated origin licensing by DNA fiber spreading.

Nucleic Acids Res

Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.

Published: January 2009

AI Article Synopsis

  • Ensuring that DNA replication origins initiate only once per cell cycle is crucial, as re-replication can lead to DNA damage and potentially cancer.
  • An innovative DNA fiber spreading technique allows researchers to directly observe re-replication in single DNA molecules, revealing significant re-replication in HeLa cancer cells and during early S phase in cells overproducing the replication factor Cdt1.
  • Comparing different cell types shows that even in untransformed cells, subtle re-replication can be detected with this new method, enhancing our understanding of genome stability and its implications for cancer development.

Article Abstract

A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and tumorigenesis. In the absence of detectable increases in cellular DNA content however, it has been difficult to directly demonstrate re-replication or to determine if the ability to re-replicate is restricted to a particular cell-cycle phase. Using an adaptation of DNA fiber spreading we report the direct detection of re-replication on single DNA molecules from human chromosomes. Using this method we demonstrate substantial re-replication within 1 h of S phase entry in cells overproducing the replication factor, Cdt1. Moreover, a comparison of the HeLa cancer cell line to untransformed fibroblasts suggests that HeLa cells produce replication signals consistent with low-level re-replication in otherwise unperturbed cell cycles. Re-replication after depletion of the Cdt1 inhibitor, geminin, in an untransformed fibroblast cell line is undetectable by standard assays but readily quantifiable by DNA fiber spreading analysis. Direct evaluation of re-replicated DNA molecules will promote increased understanding of events that promote or perturb genome stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2615611PMC
http://dx.doi.org/10.1093/nar/gkn912DOI Listing

Publication Analysis

Top Keywords

dna fiber
12
fiber spreading
12
dna
8
dna molecules
8
re-replication
6
analysis re-replication
4
re-replication deregulated
4
deregulated origin
4
origin licensing
4
licensing dna
4

Similar Publications

Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies.

View Article and Find Full Text PDF

Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .

View Article and Find Full Text PDF

Mapping mitochondrial morphology and function: COX-SBFSEM reveals patterns in mitochondrial disease.

Commun Biol

January 2025

Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.

Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies.

View Article and Find Full Text PDF

Poplar transformation with variable explant sources to maximize transformation efficiency.

Sci Rep

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops.

View Article and Find Full Text PDF

Genetic information sensors play a pivotal role in the biomedical field. The detection of deoxyribonucleic acid (DNA) is achieved experimentally using an optical microfiber interferometric sensor, which operates based on an ion-regulation sensitivity enhancement mechanism. The optical microfiber is fabricated by drawing optical fiber into a diameter of less than 10 μm via the melting and tapering technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!