Telomere maintenance is critical in tumor cell immortalization. Here, we report that the cytokine bone morphogenetic protein-7 (BMP7) inhibits telomerase activity that is required for telomere maintenance in cervical cancer cells. Application of human recombinant BMP7 triggers a repression of the human telomerase reverse transcriptase (hTERT) gene, shortening of telomeres, and hTERT repression-dependent cervical cancer cell death. Continuous treatment of mouse xenograft tumors with BMP7, or silencing the hTERT gene, results in sustained inhibition of telomerase activity, shortening of telomeres, and tumor growth arrest. Overexpression of hTERT lengthens telomeres and blocks BMP7-induced tumor growth arrest. Thus, BMP7 negatively regulates telomere maintenance, inducing cervical tumor growth arrest by a mechanism of inducing hTERT gene repression.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-08-1323DOI Listing

Publication Analysis

Top Keywords

telomere maintenance
16
tumor growth
16
telomerase activity
12
htert gene
12
growth arrest
12
bone morphogenetic
8
morphogenetic protein-7
8
inhibits telomerase
8
maintenance cervical
8
cervical tumor
8

Similar Publications

Transcriptional coupling of telomeric retrotransposons with the cell cycle.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.

Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.

View Article and Find Full Text PDF

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Tackling ALT-positive neuroblastoma: is it time to redefine risk classification systems? A systematic review with IPD meta-analysis.

Neoplasia

December 2024

Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Incliva biomedical health research institute, 46010 Valencia, Spain; CIBER of Cancer (CIBERONC), 28029 Madrid, Spain. Electronic address:

Background: The heterogeneous prognosis in neuroblastoma, shaped by telomere maintenance mechanisms (TMMs), notably the alternative lengthening of telomeres (ALT) pathway, necessitates a refined risk classification for high-risk patients. Current systems often lack precision, hindering tailored treatment approaches. This individual participant data (IPD) meta-analysis of survival among ALT-positive patients aims to improve risk classification systems, enhancing therapeutic strategies and patient outcomes.

View Article and Find Full Text PDF

Design and synthesis of novel structures with anti-tumor effects: Targeting telomere G-quadruplex and hTERT.

Bioorg Med Chem Lett

December 2024

Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, Harbin, PR China. Electronic address:

The telomeric G-quadruplex (G4) along with the telomerase catalytic subunit hTERT are crucial in the extension of telomeres. Tumor cells can establish replicative immortality by activating the telomere-maintenance mechanism (TMM).Small molecule ligands can limit cancer telomere lengthening by by targeting at G4 and hTERT.

View Article and Find Full Text PDF

A novel method for telomere length detection in fission yeast.

FEMS Yeast Res

December 2024

Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey.

Fission yeast is the ideal model organism for studying telomere maintenance in higher eukaryotes. Telomere length has been directly correlated with life expectancy and the onset of aging-related diseases in mammals. In this study, we developed a novel simple, and reproducible method to measure the telomere length, by investigating the effect of Caffeine and Cisplatin on the telomere length in fission yeast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!