Aims: Endothelial destruction and calcification primarily occur at the aortic side of the calcified aortic valves (AVs). This study investigated whether degenerative AV stenosis (AS) is associated with the presence of valvular endothelial senescence and a reduction in the number and function of endothelial progenitor cells (EPCs).
Methods And Results: Fifteen patients with severe AS and 18 age-matched control subjects were enrolled. Senescence-associated beta-galactosidase activity was mostly localized on the valvular endothelial cells (ECs) of the explanted AVs and highly coincided with the calcified lesion at the aortic side. The number (9.3 +/- 8.3 vs. 20.5 +/- 9.0 cells per 10(6) mononuclear cells; P < 0.01) and the migratory capacity (107.8 +/- 54.6 vs. 185.0 +/- 68.8 cells per 1000 cells; P < 0.01) of EPCs evaluated by FACS analysis or migration assay were significantly reduced in AS when compared with control. As possible mechanisms of alterations in EPCs, caspase-3 activity was significantly increased, whereas telomere-repeating factor-2 expression quantified by western blot was significantly reduced in EPCs from AS when compared with control.
Conclusion: Reduced regenerative capacity of valvular ECs due to senescence and decreased levels of EPCs might be, at least in part, a pathological link for the destruction of valvular ECs, resulting in progression of degenerative AS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/eurheartj/ehn501 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.
Aortic regurgitation (AR) is more prevalent in male, although cellular and molecular mechanisms underlying the sex differences in prevalence and pathophysiology are unknown. This study evaluates the impact of sex on aortic valve (AV) inflammation and remodeling as well as the cellular differences in valvular interstitial cells (VICs) and valvular endothelial cells (VECs) in patients with AR. A total of 144 patients (27.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA.
Background: Calcific aortic valve disease (CAVD) is a highly prevalent disease, especially in the elderly population, but there are no effective drug therapies other than aortic valve repair or replacement. CAVD develops preferentially on the fibrosa side, while the ventricularis side remains relatively spared through unknown mechanisms. We hypothesized that the fibrosa is prone to the disease due to side-dependent differences in transcriptomic patterns and cell phenotypes.
View Article and Find Full Text PDFBiomolecules
December 2024
Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia.
A significant role in the pathogenesis of CAVD is played by innate immunity cells, such as macrophages. In stenotic valves, macrophages have enhanced inflammatory activity, and the population's balance is shifted toward pro-inflammatory ones. Pro-inflammatory macrophages release cytokines, chemokines, and microRNA, which can directly affect the resident valvular cells and cause valve calcification.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.
View Article and Find Full Text PDFFront Physiol
December 2024
NextGen Precision Health, University of Missouri, Columbia, MO, United States.
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!