Isoxanthopterin (IX) has two edges with hydrogen bond-forming sites suitable for binding to thymine (T) and cytosine (C). The binding affinity of IX for T or C is stronger than for adenine (A) and guanine (G), whereas the base selectivity of IX for T over C (and vice versa) is moderate. In order to improve both the binding affinity and base selectivity for T over C or C over T, a methyl group is introduced respectively at the N-3 or N-8 position of IX. This leads to the known ligands 3-methyl isoxanthopterin (3-MIX) and 8-methyl isoxanthopterin (8-MIX), and the binding affinity for C or T is expected to be tuned and improved by methyl substitution. Indeed, 3-MIX selectively binds to T more strongly than IX with a binding constant of 1.5 x 10(6) M(-1) and it loses its binding affinity for C. In contrast, 8-MIX selectively binds to C over T with a binding constant of 1.0 x 10(6) M(-1) and the binding affinity is greatly improved compared to the parent ligand IX. The thermodynamics of the ligand-nucleotide interaction is analyzed by isothermal calorimetric titrations, and the results show that the interaction follows a 1:1 stoichiometry and is enthalpy-driven. The introduction of methyl groups at both N-3 and N-8 positions results in an increase in enthalpy of the ligand-nucleotide interaction, which leads to the improved binding affinity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.10.062DOI Listing

Publication Analysis

Top Keywords

binding affinity
28
binding
10
methyl substitution
8
base selectivity
8
n-3 n-8
8
selectively binds
8
binds binding
8
binding constant
8
constant 106
8
106 m-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!