Direct visualization of protease activity on cells migrating in three-dimensions.

Matrix Biol

OncoImmunin, Inc., 207A Perry Parkway, Suite 6, Gaithersburg, MD 20877, United States.

Published: January 2009

Determining the specific role(s) of proteases in cell migration and invasion will require high-resolution imaging of sites of protease activity during live-cell migration through extracellular matrices. We have designed a novel fluorescent biosensor to detect localized extracellular sites of protease activity and to test requirements for matrix metalloprotease (MMP) function as cells migrate and invade three-dimensional collagen matrices. This probe fluoresces after cleavage of a peptide site present in interstitial collagen by a variety of proteases including MMP-2, -9, and -14 (MT1-MMP) without requiring transfection or modification of the cells being characterized. Using matrices derivatized with this biosensor, we show that protease activity is localized at the polarized leading edge of migrating tumor cells rather than further back on the cell body. This protease activity is essential for cell migration in native cross-linked but not pepsin-treated collagen matrices. The new type of high-resolution probe described in this study provides site-specific reporting of protease activity and insights into mechanisms by which cells migrate through extracellular matrices; it also helps to clarify discrepancies between previous studies regarding the contributions of proteases to metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661756PMC
http://dx.doi.org/10.1016/j.matbio.2008.10.001DOI Listing

Publication Analysis

Top Keywords

protease activity
24
cell migration
8
sites protease
8
extracellular matrices
8
cells migrate
8
collagen matrices
8
protease
6
activity
6
cells
5
matrices
5

Similar Publications

Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.

View Article and Find Full Text PDF

An in-situ forming controlled release soft hydrogel-based C5a peptidase drug delivery system to treat psoriasis.

Int J Pharm

January 2025

Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:

The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!