Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels on cell proliferation in the mouse tumorigenesis process are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2008.10.004 | DOI Listing |
Environ Sci Pollut Res Int
April 2022
Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
Int J Mol Sci
February 2021
University of Veterinary Medicine & Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
The interactions of epoxiconazole and prothioconazole with human serum albumin and bovine serum albumin were investigated using spectroscopic methods complemented with molecular modeling. Spectroscopic techniques showed the formation of pesticide/serum albumin complexes with the static type as the dominant mechanism. The association constants ranged from 3.
View Article and Find Full Text PDFToxicol In Vitro
December 2020
State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China. Electronic address:
Conazoles were designed to inhibit ergosterol biosynthesis. Conazoles have been widely used as agricultural fungicides and are frequently detected in the environment. Although conazoles have been reported to have adverse effects, such as potential carcinogenic effects, the underlying molecular mechanisms of toxicity remain unclear.
View Article and Find Full Text PDFChemosphere
January 2021
Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic. Electronic address:
Widely used conazole fungicides (CFs) belong to the most frequently detected pesticides in Central European arable soils. However, data on their environmental behaviour and bioavailability to soil organisms are surprisingly scarce. In the present laboratory microcosm study prochloraz, tebuconazole, epoxiconazole and flusilazole were applied to 12 different agricultural soils at background levels.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2020
Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
Current treatments for keratitis rely on a combination of chlorhexidine gluconate, propamidine isethionate, and polyhexamethylene biguanide. These disinfectants are nonspecific and inherently toxic, which limits their effectiveness. Furthermore, in 10% of cases, recurrent infection ensues due to the difficulty in killing both trophozoites and double-walled cysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!