Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O.

Environ Sci Pollut Res Int

Institut d'Aéronomie Spatiale de Belgique, 3 av. Circulaire, B-1180, Bruxelles, Belgium.

Published: May 2010

Absorption spectroscopy, which is widely used for concentration measurements of tropospheric and stratospheric compounds, requires precise values of the absorption cross-sections of the measured species. NO(2), O(2) and its collision-induced absorption spectrum, and H(2)O absorption cross-sections have been measured at temperature and pressure conditions prevailing in the Earth's atmosphere. Corrections to the generally accepted analysis procedures used to resolve the convolution problem are also proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02987620DOI Listing

Publication Analysis

Top Keywords

absorption cross-sections
12
h2o absorption
8
cross-sections measured
8
absorption
5
cross-sections atmospheric
4
atmospheric constituents
4
constituents no2
4
no2 h2o
4
absorption spectroscopy
4
spectroscopy concentration
4

Similar Publications

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.

View Article and Find Full Text PDF

Boosting One- and Two-Photon Excited Fluorescence of Interpenetrated Tetraphenylethene-Based Metal-Organic Frameworks (TPE-MOFs) by Linker Installation.

Angew Chem Int Ed Engl

January 2025

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.

Immobilizing organic chromophores within the rigid framework of metal-organic frameworks (MOFs) augments fluorescence by effectively curtailing molecular motions. Yet, the substantial interspaces and free volumes inherent to MOFs can undermine photoluminescence efficiency, as they partially constrain intramolecular dynamics. In this study, we achieved optimization of both one- and two-photon excited fluorescence by incorporating linkers into an interpenetrated tetraphenylethene-based MOF (TPE-MOF).

View Article and Find Full Text PDF

Absorption spectra of PS in the ultraviolet and infrared region.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:

The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.

View Article and Find Full Text PDF

Influence of Periodically Varying Slit Widths on Sound Absorption by a Slit Pore Medium.

Materials (Basel)

December 2024

School of Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, UK.

A simple pore microstructure of parallel, identical, and inclined smooth-walled slits in a rigid solid, for which prediction of its geometrical and acoustic properties is straightforward, can yield useful sound absorption. This microstructure should be relatively amenable to 3D printing. Discrepancies between measurements and predictions of normal incidence sound absorption spectra of 3D printed vertical and slanted slit pore samples have been attributed to the rough surfaces of the slit walls and uneven slit cross-sections perpendicular to the printing direction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!