A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated analysis of cardiac tissue structure and function for improved identification of reversible myocardial dysfunction. | LitMetric

Background: Myocardial deformation imaging and contrast-enhanced cardiac magnetic resonance imaging (ceMRI) have been used to define myocardial viability in ischemic left ventricular dysfunction. This study evaluated the incremental predictive value of an integrated analysis of function and tissue structure for functional improvement after revascularization therapy.

Methods: In 59 patients with ischemic left ventricular dysfunction, myocardial viability was defined by pixel-tracking-derived myocardial deformation imaging and ceMRI to predict recovery of function at 9+/-2 months follow-up after revascularization. For each left ventricular segment in a 16-segment model, peak systolic radial strain was determined from parasternal two-dimensional echocardiographic views using an automatic frame-by-frame tracking system of natural acoustic echocardiographic markers, and extent of hyperenhancement using ceMRI. Five categories were generated for each parameter, allowing subsequent combination. The predictive power for segmental improvement in function was determined for each of the modalities as well as the combination of both.

Results: From 512 dysfunctional segments at baseline, 251 segments (49%) demonstrated functional recovery. The accuracy to predict functional recovery was area under curve (AUC)=0.846 for peak systolic radial strain and AUC=0.834 for extent of hyperenhancement. A combination of both parameters improved the predictive accuracy compared with hyperenhancement alone, AUC=0.861, P value of less than 0.001. In sequential Cox models, the predictive power for segmental functional recovery of extent of hyperenhancement alone (chi model 171.0, P<0.001), or peak systolic radial strain alone (chi model 205.9, P<0.001), was strengthened by a combination of both parameters (chi model 248.5, P<0.001). The advantage of image integration was particularly strong in those segments with intermediate degree of late enhancement (DeltaAUC=0.065, P<0.001).

Conclusion: Integration of advanced information on myocardial function using deformation imaging and findings on myocardial tissue structure increases the accuracy to identify reversible myocardial dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MCA.0b013e32831040a6DOI Listing

Publication Analysis

Top Keywords

left ventricular
12
extent hyperenhancement
12
functional recovery
12
integrated analysis
8
tissue structure
8
myocardial deformation
8
deformation imaging
8
imaging cemri
8
myocardial viability
8
ischemic left
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!