Brain-mapping techniques have proven to be vital in understanding the molecular, cellular, and functional mechanisms of recovery after stroke. This article briefly summarizes the current molecular and functional concepts of stroke recovery and addresses how various neuroimaging techniques can be used to observe these changes. The authors provide an overview of various techniques including diffusion-tensor imaging (DTI), magnetic resonance spectroscopy (MRS), ligand-based positron emission tomography (PET), single-photon emission computed tomography (SPECT), regional cerebral blood flow (rCBF) and regional metabolic rate of glucose (rCMRglc) PET and SPECT, functional magnetic resonance imaging (fMRI), near infrared spectroscopy (NIRS), electroencephalography (EEG), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS). Discussion in the context of poststroke recovery research informs about the applications and limitations of the techniques in the area of rehabilitation research. The authors also provide suggestions on using these techniques in tandem to more thoroughly address the outstanding questions in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663338PMC
http://dx.doi.org/10.1310/tsr1505-427DOI Listing

Publication Analysis

Top Keywords

brain-mapping techniques
8
poststroke recovery
8
authors provide
8
magnetic resonance
8
techniques
5
techniques evaluating
4
evaluating poststroke
4
recovery
4
recovery rehabilitation
4
rehabilitation review
4

Similar Publications

Background: Cognitive networks impairments are common in neuropsychiatric disorders like Attention Deficit Hyperactivity Disorder (ADHD), bipolar disorder (BD), and schizophrenia (SZ). While previous research has focused on specific brain regions, the role of the procedural memory as a type of long-term memory to examine cognitive networks impairments in these disorders remains unclear. This study investigates alterations in resting-state functional connectivity (rs-FC) within the procedural memory network to explore brain function associated with cognitive networks in patients with these disorders.

View Article and Find Full Text PDF

Target populationAdults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas)QuestionIn adults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas), does surgical resection improve overall survival compared to observation or biopsy?Updated Recommendation from the Prior Version of These Guidelines:Level III: In adults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas), surgical resection is suggested over observation or biopsy to improve overall survival.Question Q2In adults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas), does maximal surgical resection improve progression free survival (PFS) and overall survival (OS) compared to subtotal resection/biopsy?Unchanged Recommendations from the Prior Version of These GuidelinesLevel II It is recommended that GTR or STR be accomplished instead of biopsy alone when safe and feasible so as to decrease the frequency of tumor progression recognizing that the rate of progression after GTR is fairly high.Level III Greater extent of resection can improve OS in WHO grade II diffuse gliomas patients.

View Article and Find Full Text PDF

Human brain evolution is marked by a disproportionate expansion of cortical regions associated with advanced perceptual and cognitive functions. While this expansion is often attributed to the emergence of novel specialized brain areas, modifications to evolutionarily conserved cortical regions also have been linked to species-specific behaviors. Distinguishing between these two evolutionary outcomes has been limited by the ability to make direct comparisons between species.

View Article and Find Full Text PDF

Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here, we examine the neural systems underlying the online dynamic encoding of safety.

View Article and Find Full Text PDF

Objective: To evaluate iron deposition patterns in patients with cerebral cavernous malformation-related epilepsy (CRE) using quantitative susceptibility mapping (QSM) for detailed analysis of iron distribution associated with a history of epilepsy and severity.

Methods: This study is part of the Quantitative Susceptibility Biomarker and Brain Structural Property for Cerebral Cavernous Malformation Related Epilepsy (CRESS) cohort, a prospective multicenter study. QSM was used to quantify iron deposition in patients with sporadic cerebral cavernous malformation (CCMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!