Increasing evidence points to a fundamental role for cancer stem cells (CSC) in the initiation and propagation of many tumors. As such, in the context of glioblastoma multiforme (GBM), the development of treatment strategies specifically targeted towards CSC-like populations may hold significant therapeutic promise. To this end, we now report that the cell surface chemokine receptor, CXCR4, a known mediator of cancer cell proliferation and invasion, is overexpressed in primary glioblastoma progenitor cells versus corresponding differentiated tumor cells. Furthermore, administration of CXCL12, the only known ligand for CXCR4, stimulates a specific and significant proliferative response in progenitors but not differentiated tumor cells. Taken together, these results implicate an important role for the CXCR4 signaling mechanism in glioma CSC biology and point to the therapeutic potential of targeting this pathway in patients with GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628453 | PMC |
http://dx.doi.org/10.1016/j.canlet.2008.09.034 | DOI Listing |
Immunity
December 2024
Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA. Electronic address:
Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers.
View Article and Find Full Text PDFMol Clin Oncol
February 2025
Department of Biological Sciences, Tennessee State University, Nashville, TN 37066, USA.
Microtubule actin crosslinking factor 1 (MACF1), is a cytoskeletal protein that functions as a crosslinker between microtubules and actin filaments, with early studies expanding the role of this spectraplakin protein to the central nervous system and Wnt signaling. In the early 2000's, genetic alterations of MACF1 were identified in several cancers suggesting that this cytoskeletal crosslinker was involved in tumor development and progression, while preclinical studies provided evidence that MACF1 is a potential diagnostic and prognostic biomarker and therapeutic target in glioblastomas, a central nervous system cancer derived from astrocytes and neural progenitor stem cells. Furthermore, investigations in glioblastomas demonstrated that genetic inhibitory targeting of this spectraplakin protein alone and in combination with DNA damaging agents had synergistic antitumorigenic effects.
View Article and Find Full Text PDFDev Cell
December 2024
Sorbonne université, CNRS, INSERM, Institut de Biologie Paris Seine, F-75005 Paris, France.
Glioblastoma cells exhibit remarkable plasticity, enabling them to adapt to environmental cues and transition through various developmental-like states with distinct properties. In this issue of Developmental Cell, Loftus et al. identify ILK as an intrinsic regulator of glioblastoma cell transitions between progenitor-like and mesenchymal/astrocyte-like states.
View Article and Find Full Text PDFCancer Lett
December 2024
Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Circadian rhythm, regulated by a time keeping system termed as the circadian clock, is important for many biological processes in eukaryotes. Disordered circadian rhythm is implicated in different human diseases, including cardiovascular disease, neurologic disease, metabolic disorders, and cancer. The stem like-cancer cells (or cancer stem cells, CSCs) are proposed to stand at the top of the heterogeneous hierarchy in different solid tumors, which are responsible for tumor initiation, development, therapy resistance and metastasis.
View Article and Find Full Text PDFBMC Cancer
November 2024
Division of Pediatric Neurosurgery, Riley Hospital for Children, Indianapolis, IN, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!