Similarity searching using fingerprints of molecular fragments involved in protein-ligand interactions.

J Chem Inf Model

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and MedicinalChemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstrasse 2, D-53113 Bonn, Germany.

Published: December 2008

To incorporate protein-ligand interaction information into conventional two-dimensional (2D) fingerprint searching, interacting fragments of active compounds were extracted from X-ray structures of protein-ligand complexes and encoded as structural key-type fingerprints. Similarity search calculations with fingerprints derived from interacting fragments were compared to fingerprints of complete ligands and control fragments. In these calculations, fingerprints of interacting fragments produced significantly higher compound recall than other fingerprints. These results indicate that ligand fragments involved in protein-ligand interactions carry much activity-specific chemical information that can be exploited in similarity searching without explicitly accounting for interaction information.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci800322yDOI Listing

Publication Analysis

Top Keywords

interacting fragments
12
similarity searching
8
fragments involved
8
involved protein-ligand
8
protein-ligand interactions
8
calculations fingerprints
8
fingerprints
6
fragments
6
searching fingerprints
4
fingerprints molecular
4

Similar Publications

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Toxicological profile of Acovenoside A as an active pharmaceutical ingredient - prediction of missing key toxicological endpoints using in silico toxicology methodology.

Chem Biol Interact

January 2025

Safety Assessment, Syngene International Limited, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, Karnataka, India.

Acovenoside A, a cardenolide glycoside from Acokanthera oppositifolia, demonstrates significant therapeutic potential in cardioprotection and oncology, particularly against non-small cell lung cancer (NSCLC). However, its toxicological profile requires thorough evaluation for safe pharmaceutical application. For this purpose a comprehensive in silico methods were applied, including ACD/Labs Percepta, STopTox, admetSAR 3.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Zuo Gui Wan (ZGW) is a well-known traditional Chinese medicine decoction used for approximately 400 years to treat age-related degenerative conditions, including cognitive impairment in older adults, osteoporosis, and general aging. However, the mechanism of action for ZGW remains unclear.

Aims Of The Study: This study aims to investigate the efficacy of ZGW in improving cognitive function in Alzheimer's disease (AD) animal models and to explore the underlying mechanisms, presenting a novel perspective in the field.

View Article and Find Full Text PDF

Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .

View Article and Find Full Text PDF

The interactions of nanoplastics (NPs) with natural organic matters (NOMs) dominate the environmental fate of both substances and the organic carbon cycle. Their binding and aggregation mechanisms at the molecular level remain elusive due to the high structural complexity of NOMs and aged NPs. Molecular modeling was used to understand the detailed dynamic interaction mechanism between NOMs and NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!