Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/cr800427g | DOI Listing |
Acta Chir Orthop Traumatol Cech
January 2025
Ortopedická klinika, Fakultní nemocnice Hradec Králové.
Purpose Of The Study: The preclinical study aimed to compare the healing of segmental bone defects treated with biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel with the established autologous spongioplasty. Another aim was to evaluate the hydrogel as a scaffold for osteoinductive growth factor of bone morphogenetic protein-2 (BMP-2) and stem cells.
Material And Methods: The study was conducted in an in vivo animal model.
Int J Mol Sci
December 2024
Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege str. 29-33, H-1121 Budapest, Hungary.
We present a novel method for preparing bioactive and biomineralized calcium phosphate (mCP)-loaded biopolymer composite scaffolds with a porous structure. Two types of polymers were investigated as matrices: one natural, cellulose acetate (CA), and one synthetic, polycaprolactone (PCL). Biomineralized calcium phosphate particles were synthesized via wet chemical precipitation, followed by the addition of organic biominerals, such as magnesium gluconate and zinc gluconate, to enhance the bioactivity of the pure CP phase.
View Article and Find Full Text PDFMater Today Bio
February 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses.
View Article and Find Full Text PDFACS Omega
December 2024
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!