Highly efficient energy transfer in subphthalocyanine-BODIPY conjugates.

Org Lett

Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.

Published: December 2008

Two novel subphthalocyanines substituted axially with a BODIPY or distyryl BODIPY moiety have been synthesized. Both systems exhibit a highly efficient photoinduced energy transfer process, either from the excited BODIPY to the subphthalocyanine core (for the former) or from the excited subphthalocyanine to the distyryl BODIPY unit (for the latter).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol8023677DOI Listing

Publication Analysis

Top Keywords

highly efficient
8
energy transfer
8
distyryl bodipy
8
efficient energy
4
transfer subphthalocyanine-bodipy
4
subphthalocyanine-bodipy conjugates
4
conjugates novel
4
novel subphthalocyanines
4
subphthalocyanines substituted
4
substituted axially
4

Similar Publications

Zero-Crosstalk Tumor-Targeting Ratiometric Near-Infrared γ-Glutamyltranspeptidase Probe for Fluorescent-Guided Surgical Resection of Orthotopic Hepatic Tumor.

Anal Chem

January 2025

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.

The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Self-Etching Pd-Pb Nanoparticles with Controllable Tensile Strain for C Alcohol Oxidation.

ACS Appl Mater Interfaces

December 2024

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.

Pd-based nanocatalysts hold significant promise for application in alkaline direct ethanol fuel cells (DEFCs). To address the challenges of low Pd atom utilization and poor reaction kinetics in conventional Pd-based catalysts, a self-etching strategy has been developed to synthesize PdPb nanoparticles (NPs) with tunable size and abundant tensile strain. The nanoparticles demonstrated a markedly enhanced electrocatalytic performance.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Article Synopsis
  • Asymptomatic Alzheimer's disease (AsymAD) is characterized by the presence of Alzheimer's pathology in individuals who maintain cognitive function, showing lower neuroinflammation compared to symptomatic Alzheimer's disease cases.
  • Research using postmortem brain samples revealed that AsymAD subjects have unique characteristics such as enriched core plaques and reduced tau aggregation, along with increased microglial activity around amyloid plaques.
  • The study suggests that the composition of the plaque microenvironment, particularly enhanced actin-based motility pathways in microglia, may play a key role in the resilience to Alzheimer's pathology and cognitive decline in AsymAD individuals.
View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the deposition of amyloid-beta and hyperphosphorylated tau (P-tau) proteins in the brain. P-tau accumulates in neurons and is strongly associated with AD severity and affected brain regions. However, only a subset of neurons in AD exhibit tau pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!