Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200802981DOI Listing

Publication Analysis

Top Keywords

semiconducting electroluminescent
4
electroluminescent nanowires
4
nanowires self-assembled
4
self-assembled organoplatinumii
4
organoplatinumii complexes
4
semiconducting
1
nanowires
1
self-assembled
1
organoplatinumii
1
complexes
1

Similar Publications

Complex internal stresses that appear in flexible thin-film electronic devices under long-term deformation operation are associated with incompatible mechanical properties of the multiple layers, which potentially cause intralayer fracture and separation. These defects may result in device instability, performance loss, and failure. Herein, a thermoplastic functional strategy is proposed for manufacturing high-performance stretchable semiconducting polymers with excellent strain-tolerance capacities for flexible electronic devices.

View Article and Find Full Text PDF

High Mobility Emissive Organic Semiconductors for Optoelectronic Devices.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.

View Article and Find Full Text PDF
Article Synopsis
  • * It highlights the importance of stable blue-emitting materials for commercial use in OLEDs while addressing the challenges related to charge injection due to the energy gap between HOMO and LUMO levels.
  • * The research evaluates both a newly synthesized polymer (CzCop) and three commercial polymers using techniques like Spectroscopic Ellipsometry and Photoluminescence to analyze their optical, photophysical, and electrical properties to understand color stability in OLED devices.
View Article and Find Full Text PDF

In this study, fully aromatic polyether sulfones were developed, bearing blue, yellow, and orange-red π-conjugated semiconducting units. Carbazole-, anthracene-, and benzothiadiazole-based fluorophores are copolymerized with a diphenylsulfone moiety. A diphenylpyridine comonomer was additionally utilized, acting as both a solubilizing unit and a weak blue fluorescent group.

View Article and Find Full Text PDF

Modeling the electroluminescence of atomic wires from quantum dynamics simulations.

J Chem Phys

June 2024

Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Static and time-dependent quantum-mechanical approaches have been employed in the literature to characterize the physics of light-emitting molecules and nanostructures. However, the electromagnetic emission induced by an input current has remained beyond the realm of molecular simulations. This is the challenge addressed here with the help of an equation of motion for the density matrix coupled to a photon bath based on a Redfield formulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!