One fundamental role of the centriole in eukaryotic cells is to nucleate the growth of cilia. The unicellular alga Chlamydomonas reinhardtii provides a simple genetic system to study the role of the centriole in ciliogenesis. Wild-type cells are biflagellate, but "uni" mutations result in failure of some centrioles (basal bodies) to assemble cilia (flagella). Serial transverse sections through basal bodies in uni1 and uni2 single and double mutant cells revealed a previously undescribed defect in the transition of triplet microtubules to doublet microtubules, a defect correlated with failure to assemble flagella. Phosphorylation of the Uni2 protein is reduced in uni1 mutant cells. Immunogold electron microscopy showed that the Uni2 protein localizes at the distal end of the basal body where microtubule transition occurs. These results provide the first mechanistic insights into the function of UNI1 and UNI2 genes in the pathway mediating assembly of doublet microtubules in the axoneme from triplet microtubules in the basal body template.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613092PMC
http://dx.doi.org/10.1091/mbc.e08-09-0900DOI Listing

Publication Analysis

Top Keywords

uni1 uni2
12
doublet microtubules
12
uni2 genes
8
transition triplet
8
role centriole
8
basal bodies
8
mutant cells
8
triplet microtubules
8
uni2 protein
8
basal body
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!