AI Article Synopsis

Article Abstract

Integration of ultrastructural and molecular sequence data has revealed six supergroups of eukaryote organisms (excavates, Rhizaria, chromalveolates, Plantae, Amoebozoa and opisthokonts), and the root of the eukaryote evolutionary tree is suggested to lie between unikonts (Amoebozoa, opisthokonts) and bikonts (the other supergroups). However, some smaller lineages remain of uncertain affinity. One of these unassigned taxa is the anaerobic, free-living, amoeboid flagellate Breviata anathema, which is of key significance as it is unclear whether it is a unikont (i.e. possibly the deepest branching amoebozoan) or a bikont. To establish its evolutionary position, we sequenced thousands of Breviata genes and calculated trees using 78 protein sequences. Our trees and specific substitutions in the 18S RNA sequence indicate that Breviata is related to other Amoebozoa, thereby significantly increasing the cellular diversity of this phylum and establishing Breviata as a deep-branching unikont. We discuss the implications of these results for the ancestral state of Amoebozoa and eukaryotes generally, demonstrating that phylogenomics of phylogenetically 'nomadic' species can elucidate key questions in eukaryote evolution. Furthermore, mitochondrial genes among the Breviata ESTs demonstrate that Breviata probably contains a modified anaerobic mitochondrion. With these findings, remnants of mitochondria have been detected in all putatively deep-branching amitochondriate organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660946PMC
http://dx.doi.org/10.1098/rspb.2008.1358DOI Listing

Publication Analysis

Top Keywords

evolutionary position
8
amoebozoa opisthokonts
8
breviata
6
position breviate
4
breviate amoebae
4
amoebae primary
4
eukaryote
4
primary eukaryote
4
eukaryote divergence
4
divergence integration
4

Similar Publications

The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.

View Article and Find Full Text PDF

Extensive ichnologic and sedimentologic datasets were gathered from six localities (Fortune Head, Fortune North, Grand Bank Head, Lewin's Cove, Little Dantzic Cove, and Point May) of the Ediacaran-Cambrian Chapel Island Formation at Burin Peninsula, southeastern Newfoundland, eastern Canada. 1708.2 m of sedimentary strata were logged at a centimeter scale (1:40) using a Jacob staff, in addition to 11.

View Article and Find Full Text PDF

Morphology, phylogeography, phylogeny, and taxonomy of (Apiaceae).

Front Plant Sci

January 2025

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Background: The genus is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that was not similar to members but resembled species in morphology, indicating that the taxonomic position of needs to be re-evaluated.

View Article and Find Full Text PDF

All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade-offs constrain the range of viable life-history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade-offs as they have a high diversity of coexisting tree species whose life-history strategies tend to align along two orthogonal axes of variation: a growth-survival trade-off that separates species with fast growth from species with high survival and a stature-recruitment trade-off that separates species that achieve large stature from species with high recruitment.

View Article and Find Full Text PDF

Background: Broussonetia papyrifera, B. monoica, and B. kaempferi belong to the genus Broussonetia (Moraceae).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!