Alarm calls given by other species potentially provide a network of information about danger, but little is known about the role of acoustic similarity compared with learning in recognition of heterospecific calls. In particular, the aerial 'hawk' alarm calls of passerines provide a textbook example of signal design because many species have converged on a design that thwarts eavesdropping by hawks, and call similarity might therefore allow recognition. We measured the response of fairy-wrens (Malurus cyaneus) to playback of acoustically similar scrubwren (Sericornis frontalis) aerial alarm calls. First, if call similarity prompts escape independent of learning, then fairy-wrens should flee to playback of scrubwren calls outside their geographical range. However, fairy-wrens fled only in sympatry. Second, if call similarity is necessary for learning heterospecific calls, then fairy-wrens should not respond to sympatric species with different calls. We found, on the contrary, that fairy-wrens fled to the very different aerial alarm calls of a honeyeater (Phylidonyris novaehollandiae). Furthermore, response to the honeyeater depended on the specific structure of the call, not acoustic similarity. Overall, call similarity was neither sufficient nor necessary for interspecific recognition, implying learning is essential in the complex task of sifting the acoustic world for cues about danger.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660948 | PMC |
http://dx.doi.org/10.1098/rspb.2008.1368 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!