Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The in vitro culture of human hematopoietic cells has recently received considerable attention due to its clinical importance. Most studies of the culture and expansion of hematopoietic cells have been performed in static cultures but only very few reports exist on the use of bioreactors where strict control of environmental variables is maintained. In this work, the design, characterization and application of a fully instrumented minibioreactor for the culture of human hematopoietic cells from umbilical cord blood is presented. The system consists of a stirred- tank reactor where cells are maintained in suspension in an homogeneous environment and without the need of a stromal feeding layer. The minibioreactor was coupled to a data acquisition and control system which continuously monitored pH, dissolved oxygen and redox potential. When operated at 75 rpm with a hanging magnetic bar (impeller-to-tank diameter ratio of 0.57), the dead and mixing times were 120 and 80 s, respectively, and the maximum response rate and volumetric oxygen transfer coefficient were 0.8 mM O2 hr-1, and 1.8 hr-1, respectively. Such characteristics allowed a tight control of pH(until day 11) and dissolved oxygen at predetermined set-points, and up to a 7-fold expansion of hematopoietic progenitors was possible in cultures maintained at 20% dissolved oxygen with respect to air saturation. Growth phase and cell concentration could be inferred on- line through determinations of oxygen uptake rate and culture redox potential. Oxygen uptake rate increased during exponential growth phase to a maximum of 40 muM hr-1. Such an increase closely followed the increase in concentration of hematopoietic progenitors. In contrast, culture redox potential decreased during exponential growth phase and then increased during death phase. The designed system permits not only the maintenance of controlled environmental conditions and on-line identification of fundamental culture parameters, but also the application of control strategies for improving expansion of hematopoietic cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449845 | PMC |
http://dx.doi.org/10.1023/A:1008042000744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!