The growth of mammalian cells in vitro requires the use of rich culture media that are prepared by combining serum with specific nutrient formulations. Serum, the most expensive component of culture media, provides a complex mixture of growth factors and nutrients. Protein hydrolysates that can support in vitro cell growth and eliminate or reduce the need to use serum have been obtained from different sources. Here we describe the use of two food grade proteases to produce a chickpea protein hydrolysate that has been added to cell culture medium in order to determine whether it can be used as a substitute for serum. Medium containing the hydrolysate has been tested using two human cells lines: the monocytic THP-1 cell line which grows in suspension, and the epithelial Caco-2 cell line which grows as a monolayer. The chickpea protein hydrolysate was a good substitute for serum in the first case, but did not allow growth of Caco-2 cells. Supplementation of culture media with this inexpensive and safe hydrolysate would greatly reduce the cost of cell culture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570005 | PMC |
http://dx.doi.org/10.1007/s10616-008-9170-z | DOI Listing |
Foods
January 2025
Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
Beetroots are one of the primary sources of betalains, nitrogenous pigments with anti-inflammatory and antioxidant properties. However, due to their chemical instability, betalains have limited use in food applications. This work investigated whether betalains encapsulated in chickpea protein could be stabilized and delivered in a shelf-stable format.
View Article and Find Full Text PDFFoods
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland.
The chemical composition and biological activity of and are scarcely investigated. In this study, the nutritional and chemical profiles of and , considering their different morphological parts (leaves, fruits and roots), were assessed together with their antioxidant and antibacterial potential. Our results showed that carbohydrates are the major macronutrients in both species (above 62 g/100 g dry weight-DW).
View Article and Find Full Text PDFMol Breed
February 2025
National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024 China.
Unlabelled: Chickpea (. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States.
Rationale: Approximately 32 million people in the United States suffer from food allergies. Some food groups, such as legumes - peanuts, tree nuts, fish, and shellfish, have a high risk of cross-reactivity. However, the murine model of multiple food group cross-reactivity is limited.
View Article and Find Full Text PDFFood Technol Biotechnol
December 2024
TÜBİTAK MAM, Climate and Life Sciences, Food Technology Research Group, Barış Mah. Dr. Zeki Acar Cad. No:1 P.K. 21, 41470Gebze Kocaeli, Türkiye.
Research Background: Chickpea is a very good source of protein for the development of protein-enriched plant-based ingredients. Chickpea protein isolates are primarily obtained by wet extraction methods such as alkaline or salt extraction. The energy input required for the production of chickpea protein isolates can have an impact on both the environment and processing, thus affecting nutritional quality and human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!