The spatial development of the cultivation of a bone marrow stromal cell line (SR-4987) in porous carriers was investigated in order to construct a three-dimensional hematopoietic culture system. Low-rate continuous agitation, 20 rpm, was an appropriate method to achieve initial adhesion of cells onto a cellulose porous beads (CPB, 100 mum pore diameter) in a spinner bottle, compared with other methods such as centrifugation and intermittent agitation. Cell growth with continuous agitation at 70 rpm after initial cell adhesion was not inferior to that at 20 rpm. A 2- and 10-fold increase in the inoculum cell concentration for CPB and another type of porous cellulose beads (Micro-cube (MC), 500 mum pore diameter) resulted in a 1.2- and 2-fold increase in final cell concentrationm, respectively. Cells attached to the MC beads and a polyester nonwoven dic (Fibra-cell (FC)) could grow and spread well on the carriers and a fibroblast-like shape was observed under scanning electron microscopy while the cells on CPB were globular. The flatness and inner surface area of these carriers may be the reason for the differences in cell morphology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449542 | PMC |
http://dx.doi.org/10.1023/A:1008098313067 | DOI Listing |
J Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
Motivation: The accurate prediction of O-GlcNAcylation sites is crucial for understanding disease mechanisms and developing effective treatments. Previous machine learning models primarily relied on primary or secondary protein structural and related properties, which have limitations in capturing the spatial interactions of neighboring amino acids. This study introduces local environmental features as a novel approach that incorporates three-dimensional spatial information, significantly improving model performance by considering the spatial context around the target site.
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence RI.
Coronary artery disease (CAD) remains a leading cause of morbidity and mortality worldwide, necessitating advancements in diagnostic techniques. Coronary CT angiography (CCTA) has emerged as a pivotal non-invasive tool for evaluating coronary artery anatomy and detecting atherosclerotic plaque burden with high spatial resolution. This review explores the evolution of CCTA, highlighting its technological advancements, clinical applications, and challenges.
View Article and Find Full Text PDFMed Phys
January 2025
School of Computer Science and Engineering, Beihang University, Beijing, China.
Background: Computed tomography angiography (CTA) is used to screen for coronary artery calcification. As the coronary artery has complicated structure and tiny lumen, manual screening is a time-consuming task. Recently, many deep learning methods have been proposed for the segmentation (SEG) of coronary artery and calcification, however, they often neglect leveraging related anatomical prior knowledge, resulting in low accuracy and instability.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Max-Planck-Institut für Plasmaphysik, Garching 85748, Germany.
This article presents an experimental setup capable of providing high spatial and temporal resolution measurements of neutral gas puff injection using a glow discharge to excite the neutral gas and an ultra-high-speed camera to record the emitted light. Using the proposed setup, the shape and propagation velocity of a thermal deuterium gas puff at 1 bar have been measured. The cloud has a conical shape and a propagation velocity of vprop = 1870 ± 270 m/s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!