Alcohol dehydrogenase-I (ADH-I) derived from horse liver stimulated IgM production by human-human hybridoma, HB4C5 cells and lymphocytes. The IPSF activity of ADH-I was suppressed by coexistence of short DNA whose chain length is less than 200 base pairs (bp) and fibrous DNA in a dose-dependent manner. These DNA preparations completely inhibited the IPSF activity at the concentration of 250 mug/ml and 1.0 mg/ml, respectively. DNA sample termed long DNA whose average chain length is 400-7000 bp slightly stimulated IPSF activity at 0.06 mug/ml. However, long DNA suppressed IPSF activity by half at 1.0 mg/ml. The laser confocal microscopic analysis had revealed that ADH-I was incorporated by HB4C5 cells. The uptake of ADH-I was strongly inhibited by short DNA and fibrous DNA. However, long DNA did not suppress the internalization of ADH-I into HB4C5 cells. These findings indicate that short DNA and fibrous DNA depress IPSF activity of ADH-I by inhibiting the internalization of this enzyme. According to the gel-filtration analysis using HPLC, ADH-I did not directly interact with short DNA. It is expected from these findings that short DNA influences HB4C5 cells to suppress the internalization of ADH-I. Moreover, these facts also strongly suggest that ADH-I acts as IPSF after internalization into the cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449762PMC
http://dx.doi.org/10.1023/A:1008024322602DOI Listing

Publication Analysis

Top Keywords

ipsf activity
20
short dna
20
hb4c5 cells
16
dna
13
fibrous dna
12
long dna
12
adh-i
9
activity adh-i
8
chain length
8
dna fibrous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!