Cell- and tissue culture methodology form an important base for biological, biochemical and biomedical research. Most cell culture techniques require the use of animal sera for the successful propagation of cells. However, the varying composition between batches has fuelled the need for alternatives. In the case of serum derived from animal foetuses, ethical concerns have also been raised. Here we compare the use of a platelet derived lysate (Plysate), which is currently under development as a serum substitute, in the culturing of primary human muscle cells to foetal bovine serum (FBS). In cells cultured with Plysate, differentiation into myotubes, glucose-uptake, phosphatidylinositol 3-kinase (PI3K) activity and expression and phosphorylation of ERK1/2 MAPK and PKB/Akt was impaired. Thus for primary human skeletal muscle Plysate is a sub-optimal substitute for FBS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449726PMC
http://dx.doi.org/10.1007/s10616-005-4074-7DOI Listing

Publication Analysis

Top Keywords

human skeletal
8
skeletal muscle
8
primary human
8
serum
4
serum replacement
4
plysate
4
replacement plysate
4
plysate cell
4
cell growth
4
growth metabolismin
4

Similar Publications

A neuromechanics solution for adjustable robot compliance and accuracy.

Sci Robot

January 2025

Research Center for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain.

Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective.

View Article and Find Full Text PDF

The fast-bowling action demands repetitive high-intensity whole body movements, imposing complex physical and perceptual demands on players that vary significantly throughout the season. This study aimed to assess and establish practical methods and metrics for quantifying fatigue after four simulated fast bowling spells. Eleven senior club male fast bowlers (age 27.

View Article and Find Full Text PDF

The assessment of biological maturation is a central topic in pediatric exercise sciences. Skeletal age (SA) reflects changes in each bone of the hand and wrist from initial ossification to the adult state. This study examined intra-observer and inter-examiner agreement is Greulich-Pyle (GP) assessments of SA in 97 male tennis players 8.

View Article and Find Full Text PDF

Lower-limb exoskeletons have demonstrated great potential for gait rehabilitation in individuals with motor impairments; however, maintaining human-exoskeleton coordination remains a challenge. The coordination problem, referred to as any mismatch or asynchrony between the user's intended trajectories and exoskeleton desired trajectories, leads to sub-optimal gait performance, particularly for individuals with residual motor ability. Here, we investigate the virtual energy regulator (VER)'s ability to generate coordinated locomotion in lower limb exoskeleton.

View Article and Find Full Text PDF

Recruitment input-output curves of transspinal evoked potentials that represent the net output of spinal neuronal networks during which cortical, spinal and peripheral inputs are integrated as well as motor evoked potentials and H-reflexes are used extensively in research as neurophysiological biomarkers to establish physiological or pathological motor behavior and post-treatment recovery. A comparison between different sigmoidal models to fit the transspinal evoked potentials recruitment curve and estimate the parameters of physiological importance has not been performed. This study sought to address this gap by fitting eight sigmoidal models (Boltzmann, Hill, Log-Logistic, Log-Normal, Weibull-1, Weibull-2, Gompertz, Extreme Value Function) to the transspinal evoked potentials recruitment curves of soleus and tibialis anterior recorded under four different cathodal stimulation settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!