We describe a novel fully automated high-throughput time-lapse microscopy system and evaluate its performance for precisely tracking the motility of several glioma and osteoblastic cell lines. Use of this system revealed cell motility behavior not discernable with conventional techniques by collecting data (1) from closely spaced time points (minutes), (2) over long periods (hours to days), (3) from multiple areas of interest, (4) in parallel under several different experimental conditions. Quantitation of true individual and average cell velocity and path length was obtained with high spatial and temporal resolution in "scratch" or "wound healing" assays. This revealed unique motility dynamics of drug-treated and adhesion molecule-transfected cells and, thus, this is a considerable improvement over current methods of measurement and analysis. Several fluorescent vital labeling methods commonly used for end-point analyses (GFP expression, DiO lipophilic dye, and Qtracker nanocrystals) were found to be useful for time-lapse studies under specific conditions that are described. To illustrate one application, fluorescently labeled tumor cells were seeded onto cell monolayers expressing ectopic adhesion molecules, and this resulted in consistently reduced tumor cell migration velocities. These highly quantitative time-lapse analysis methods will promote the creation of new cell motility assays and increase the resolution and accuracy of existing assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449480PMC
http://dx.doi.org/10.1007/s10616-006-9006-7DOI Listing

Publication Analysis

Top Keywords

time-lapse microscopy
8
cell migration
8
cell motility
8
cell
7
automated time-lapse
4
microscopy high-resolution
4
high-resolution tracking
4
tracking cell
4
migration describe
4
describe novel
4

Similar Publications

Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell-cell interactions in live-cell imaging data.

View Article and Find Full Text PDF

CDK2 activity crosstalk on the ERK kinase translocation reporter can be resolved computationally.

Cell Syst

January 2025

Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA. Electronic address:

The mitogen-activated protein kinase (MAPK) pathway integrates growth factor signaling through extracellular signal-regulated kinase (ERK) to control cell proliferation. To study ERK dynamics, many researchers use an ERK activity kinase translocation reporter (KTR). Our study reveals that this ERK KTR also partially senses cyclin-dependent kinase 2 (CDK2) activity, making it appear as if ERK activity rises as cells progress through the cell cycle.

View Article and Find Full Text PDF

A fair comparison of multiple live cell cultures requires examining them under identical environmental conditions, which can only be done accurately if all cells are prepared simultaneously and studied at the same time and place. This contribution introduces a multiplexed lensless digital holographic microscopy system (MLS), enabling synchronous, label-free, quantitative observation of multiple live cell cultures with single-cell precision. The innovation of this setup lies in its ability to robustly compare the behaviour, i.

View Article and Find Full Text PDF

Protocol for live imaging of axonal transport in iPSC-derived iNeurons.

STAR Protoc

January 2025

Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany. Electronic address:

Studies of human induced pluripotent stem cell (iPSC)-derived neurons promise important insights into neurodegenerative diseases. Here, we present a protocol for live imaging of axonal transport in glutamatergic iPSC-derived neurons (iNeurons). We describe steps for the differentiation of iPSCs into iNeurons via PiggyBac-mediated neurogenin 2 (NGN2) delivery, iNeuron culture and transfection, and the acquisition and analysis of time-lapse images.

View Article and Find Full Text PDF

Lens-Free On-Chip Quantitative Phase Microscopy for Large Phase Objects Based on a Biplane Phase Retrieval Method.

Sensors (Basel)

December 2024

Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Lens-free on-chip microscopy (LFOCM) is a powerful computational imaging technology that combines high-throughput capabilities with cost efficiency. However, in LFOCM, the phase recovered by iterative phase retrieval techniques is generally wrapped into the range of -π to π, necessitating phase unwrapping to recover absolute phase distributions. Moreover, this unwrapping process is prone to errors, particularly in areas with large phase gradients or low spatial sampling, due to the absence of reliable initial guesses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!