Previously, we prepared an IgM monoclonal antibody(PFG-1) which specifically recognized a cell-membraneglycoprotein (PFG-1 antigen; 55 kD, pI 5.9),immunohistochemically reacted with granulosa cells ofhealthy follicles but not of atretic follicles, andinduced granulosa cell apoptosis. In the presentstudy, an IgM monoclonal antibody (PFG-3) capable ofinducing granulosa cell apoptosis and an IgGmonoclonal antibody (PFG-4) not capable of inducingapoptosis were produced against granulosa cellsprepared from healthy antral follicles of porcineovaries. Two-dimensional Western blotting analysisrevealed that PFG-3 specifically recognized twocell-membrane proteins (named PFG-3-1 andPFG-3-2/PFG-1 antigens; 42 kD, pI 5.2 and 55 kD, pI5.9, respectively) of healthy granulosa cells, andthat PFG-4 recognized the same two cell-membraneproteins. In atretic granulosa cells, PFG-3-2/PFG-1antigen disappeared. Immunochemical reactions of theseantibodies were only detected in follicular granulosacells but not any other ovarian tissues or organs.PFG-3 and PFG-4 immunohistochemically reacted withgranulosa cells of healthy and atretic follicles. Whenthe isolated granulosa cells prepared from healthyfollicles were cultured in medium containing PFG-3,the cells underwent apoptosis, and co-incubation withPFG-4 inhibited PFG-3-inducible apoptosis. Theseobservations suggested that PFG-3-2/PFG-1 antigen isa novel cell death receptor which is different fromthe apoptosis-mediating receptors (Fas/Apo-1/CD95 orTNF receptor), and that PFG-3-1 antigen may act as adecoy receptor and inhibit apoptotic signal transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466707PMC
http://dx.doi.org/10.1023/A:1008146119761DOI Listing

Publication Analysis

Top Keywords

granulosa cells
20
novel cell
8
cell death
8
death receptor
8
granulosa
8
igm monoclonal
8
atretic follicles
8
granulosa cell
8
cell apoptosis
8
cells
7

Similar Publications

Luteinizing hormone receptor knockout mouse: What has it taught us?

Andrology

January 2025

Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK.

Luteinizing hormone (LH), along with its agonist choriongonadotropin (hCG) in humans, is the key hormone responsible for the tropic regulation of the gonadal function. LH and hCG act through their cognate receptor, the luteinizing hormone/choriongonadotropin receptor (LHCGR; more appropriately LHR in rodents lacking CG), located in the testis in Leydig cells and in the ovary in theca, luteal, and luteinizing granulosa cells. Low levels in LHCGR are also expressed in numerous extragonadal sites.

View Article and Find Full Text PDF

Background: Metabolic Syndrome (MS) is a cluster of conditions that significantly increase the risk of infertility in women. Granulosa cells are crucial for ovarian folliculogenesis and fertility. Understanding molecular alterations in these cells can provide insights into MS-associated infertility.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the possible mechanism through which acupuncture protects ovaries with Poor Ovarian Response (POR) in rats based on microRNA (miRNA).

Methods: Thirty-six SPF SD female non-pregnant rats aged 8 weeks were randomly divided into the blank group, model group, and acupuncture group, with 12 rats in each group. According to the group, the rats were given gavage of Tripterygium wilfordii polyglycosides suspension for 14 days to establish the model of POR, and then the rats were treated with acupuncture for 2 weeks, once a day, for 20 minutes.

View Article and Find Full Text PDF

Study on the effects of Mogroside V in inhibiting NLRP3-mediated granulosa cell pyroptosis and insulin resistance to improve PCOS.

J Ovarian Res

January 2025

The First Affiliated Hospital, Gynecology&Obstetrics and Reproductive Medical Center, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.

Objective: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrinopathy in reproductive-aged women, contributing to 75% of infertility cases due to ovulatory dysfunction. The condition poses significant health and psychological challenges, making the study of its pathogenesis and treatment a research priority. This study investigates the effects of Mogroside V (MV) on PCOS, focusing on its anti-inflammatory and anti-insulin resistance properties.

View Article and Find Full Text PDF

Objective: To study the relationship between FK506-binding protein 51 (FKBP51) and ovarian aging and/or diminished ovarian reserve (DOR) in human ovaries by comparing FKBP51 levels in granulosa (GC) and cumulus cells (CC), collected during controlled ovarian stimulation (COS) from women of advanced reproductive age and/or with a diagnosis of DOR with that of young women with normal ovarian reserve. To explore the association between increased FKBP51 expression and human ovarian aging further, expression of FKBP51 was compared in ovarian stroma of post-menopausal versus pre-menopausal women. Lastly, this relation was further queried by comparing ovarian expression of several collagen genes as markers of ovarian fibrosis in 14-month-old wild type (Fkbp5) and Fkbp5 knockout (Fkbp5) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!