Vasculogenesis, the formation of blood vessels in embryonic or fetal tissue mediated by immature vascular cells (i.e., angioblasts), is poorly understood. Here we report a summary of our recent studies on the identification of a population of vascular progenitor cells (VPCs) in human fetal aorta. These undifferentiated mesenchymal cells co-express endothelial and myogenic markers (CD133+, CD34+, KDR+, desmin+) and are localized in outer layer of the aortic stroma of 11-12 weeks old human fetuses. Under stimulation with VEGF-A or PDGF-BB, VPCs give origin to a mixed population of mature endothelial and mural cells, respectively. When embedded in a three-dimensional collagen gel, VPCs organize into cohesive cellular cords that resembled mature vascular structures. The therapeutic efficacy of a small number of VPCs transplanted into ischemic limb muscle was demonstrated in immunodeficient mice. Investigation of the effect of VPCs on experimental heart ischemia and on diabetic ischemic ulcers in mice is in progress and seems to confirm their efficacy. On the whole, fetal aorta represents an important source for the investigation of phenotypic and functional features of human vascular progenitor cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593754 | PMC |
http://dx.doi.org/10.1007/s10616-008-9167-7 | DOI Listing |
Sci China Life Sci
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
Adipogenesis is the healthy expansion of white adipose tissue (WAT), serving as a compensatory response to maintain metabolic homeostasis in the presence of excess energy in the body. Therefore, the identification of novel regulatory molecules in adipogenesis, specifically membrane receptors such as G protein-coupled receptors (GPCRs), holds significant clinical promise. These receptors can serve as viable targets for pharmaceuticals, offering potential for restoring metabolic homeostasis in individuals with obesity.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.
Background And Purpose: Endothelial dysfunction is considered an emerging therapeutic target to prevent complications during acute stroke and to prevent recurrent stroke. This review aims to provide an overview of the current knowledge on endothelial dysfunction, outline the diagnostic methods used to measure it and highlight the drugs currently being investigated for the treatment of endothelial dysfunction in acute ischemic stroke.
Methods: The PubMed® and ClinicalTrials.
Cardiol Rev
January 2025
Department of Internal Medicine, Milton S Hershey Medical Center, Hershey, PA.
Moyamoya disease (MMD) is a vascular disorder characterized by steno-occlusive alterations in cerebral arteries, often resulting in ischemic or hemorrhagic events predominantly affecting the female population and more common in Asian populations. Despite its predominantly neurological manifestations, recent research suggests a potential association between MMD and cardiovascular diseases (CVDs). MMD involves various genetic and environmental factors, with mutations in the RNF213 gene being strongly implicated in disease susceptibility, with histopathological findings revealing intimal lesions and smooth muscle proliferation, contributing to vascular occlusion as well as dysregulation of circulating endothelial and smooth muscle progenitor cells further complicating MMD's pathogenesis.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Amity Institute of Pharmacy, Amity University Haryana Chemistry Gurugram India.
Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.
Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!