A family of sensitive energetic salts of the 5-nitrotetrazolate anion with alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) were synthesized either by the digestion of an acid copper salt of 5-nitrotetrazole with a suitable metal hydroxide, or alternatively by reaction of ammonium 5-nitrotetrazolate with a suitable metal base (MOH, MHCO3 or M2CO3) in aqueous or alcoholic solution. All the compounds were characterized by analytical methods (elemental analysis and mass spectrometry) and spectroscopic methods (NMR and vibrational spectroscopy). The lighter metal salts and , incorporate three and two crystal water molecules in the structure, respectively, whereas the heavier alkali metal derivatives form anhydrous species, and thus showed enhanced sensitivity to friction and shock. In addition, the crystal structure of each of the new materials was determined by X-ray diffraction techniques ( and : monoclinic, P2(1)/c; : triclinic, P1; : monoclinic, Cc and : monoclinic, C2/c). The thermal stability of compounds was assessed by differential scanning calorimetry (DSC) measurements showing significant thermal stability. Lastly, the energies of combustion of and were measured experimentally using oxygen bomb calorimetry (, -1340(15) cal g(-1) and , -1200(20) cal g(-1)) and was used to calculate their standard molar heats of formation (, -610(55) kJ mol(-1) and , -360(65) kJ mol(-1)).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b811410bDOI Listing

Publication Analysis

Top Keywords

alkali metal
12
suitable metal
8
thermal stability
8
cal g-1
8
metal
5
metal 5-nitrotetrazolate
4
5-nitrotetrazolate salts
4
salts prospective
4
prospective replacements
4
replacements service
4

Similar Publications

The study established experimental transects in undisturbed areas of the Caohai Nature Reserve in Weining, Guizhou Province. The study aims to examine complete successional transects in different landscapes: non-karst, karst, and vegetation restoration, using the spatiotemporal substitution method. It analyzes the distribution patterns of Total potassium (TK) and Avail potassium (AK) in the soil and employs a Generalized Linear Mixed Model (GLMM) to investigate the effects of geomorphology, soil aggregates, and their interactions on the changes in soil potassium(K) elements.

View Article and Find Full Text PDF

An innovative strategy for constructing multicore yolk-shell Si/C anodes for lithium-ion batteries.

J Colloid Interface Sci

January 2025

Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Electronic address:

The yolk-shell architecture offers a promising solution to the challenges of silicon (Si) anodes in lithium-ion batteries (LIBs), particularly in addressing the significant volume changes that occur during charge and discharge cycles. However, traditional construction methods often rely on sacrificial templates and acid or alkali etching, which limits industrial applicability. In this work, we successfully constructed a silicon/carbon (Si/C) composite with a multicore yolk-shell structure using scalable spray drying technology and in-situ growth of metal-organic frameworks (MOFs) at room temperature.

View Article and Find Full Text PDF

Purpose Of Review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli.

View Article and Find Full Text PDF

Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.

View Article and Find Full Text PDF

Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!