Hydrogen sulfide (H(2)S) has been traditionally known for its toxic effects on living organisms. The role of H(2)S in the homeostatic regulation of pancreatic insulin metabolism has been unclear. The present study is aimed at elucidating the effect of endogenously produced H(2)S on pancreatic insulin release and its role in diabetes development. Diabetes development in Zucker diabetic fatty (ZDF) rats was evaluated in comparison with Zucker fatty (ZF) and Zucker lean (ZL) rats. Pancreatic H(2)S production and insulin release were also assayed. It was found that H(2)S was generated in rat pancreas islets, catalyzed predominantly by cystathionine gamma-lyase (CSE). Pancreatic CSE expression and H(2)S production were greater in ZDF rats than in ZF or ZL rats. ZDF rats exhibited reduced serum insulin level, hyperglycemia, and insulin resistance. Inhibition of pancreatic H(2)S production in ZDF rats by intraperitoneal injection of DL-propargylglycine (PPG) for 4 weeks increased serum insulin level, lowered hyperglycemia, and reduced hemoglobin A1c level (P<0.05). Although in ZF rats it also reduced pancreatic H(2)S production and serum H(2)S level, PPG treatment did not alter serum insulin and glucose level. Finally, H(2)S significantly increased K(ATP) channel activity in freshly isolated rat pancreatic beta-cells. It appears that insulin release is impaired in ZDF because of abnormally high pancreatic production of H(2)S. New therapeutic approach for diabetes management can be devised based on our observation by inhibiting endogenous H(2)S production from pancreas.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2008.109DOI Listing

Publication Analysis

Top Keywords

zdf rats
16
insulin release
12
h2s production
12
h2s
8
zucker diabetic
8
pancreatic insulin
8
diabetes development
8
pancreatic h2s
8
serum insulin
8
insulin level
8

Similar Publications

Diabetes mellitus type 2 (DMT2) promotes Achilles tendon (AS) degeneration and exercise could modulate features of DMT2. Hence, this study investigated whether tenocytes of non DMT2 and DMT2 rats respond differently to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis factor (TNF)α or cyclic stretch. AS tenocytes, isolated from DMT2 (fa/fa) or non DMT2 (lean, fa/+) adult Zucker Diabetic Fatty (ZDF) rats, were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L vs.

View Article and Find Full Text PDF

Menaquinone-7 and its therapeutic potential in type 2 diabetes mellitus based on a Zucker diabetic fatty rat model.

Heliyon

December 2024

Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.

Background: Type 2 diabetes mellitus (T2DM) is marked by insulin resistance, low grade chronic inflammation, and endothelial dysfunction. Vitamin K2, especially menaquinone-7 (MK-7), might delay T2DM progression and alleviate its consequences. Hence, this study evaluated the effects of MK-7 on serum and urine markers of diabetes in an animal model of T2DM.

View Article and Find Full Text PDF

Obesity is a significant global health challenge, increasing the risk of developing type 2 diabetes mellitus (T2DM) and cardiovascular disease. Research indicates that obese individuals, regardless of their diabetic status, have an increased risk of cardiovascular complications. Studies suggest that these patients experience impaired electrical conduction in the heart, although the underlying cause-whether due to obesity-induced fat toxicity or diabetes-related factors-remains uncertain.

View Article and Find Full Text PDF

Diabetic gastroparesis (DGP), a prevalent complication of diabetes, is characterized by delayed gastric emptying and inflammation. The dorsal motor nucleus of the vagus (DMV) plays a crucial role in modulating gastric function via the vagus nerve. Neuregulin 1 (NRG1), which is present in the DMV and influences the autonomic nervous system, has an unclear role in DGP.

View Article and Find Full Text PDF

Melatonin induces fiber switching by improvement of mitochondrial oxidative capacity and function via NRF2/RCAN/MEF2 in the vastus lateralis muscle from both sex Zücker diabetic fatty rats.

Free Radic Biol Med

December 2024

Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain. Electronic address:

The positive role of melatonin in obesity control and skeletal muscle (SKM) preservation is well known. We recently showed that melatonin improves vastus lateralis muscle (VL) fiber oxidative phenotype. However, fiber type characterization, mitochondrial function, and molecular mechanisms that underlie VL fiber switching by melatonin are still undefined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!